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Eric Niblock

January 28, 2022

1. In a simple linear regression analysis, n independent paired data
(y1, x1), ..., (yn, xn) are to be fitted to the model M1 given by,

yi = β0 + β1(xi − µ) + ϵi for i = 1, ..., n

where the regressor x is a random variable with mean µx and
variance σ2

x. Conditional on x, the random error ϵ has mean zero
and variance σ2 which does not depend on x, β0, β1. The µ is a
given real number (that is, the value of µ is known). The values
of µx, σ2

x, σ2, β0, and β1 are all unknown. Before the values of
the n independent paired data for (y, x) are available, we need
to construct estimators for the parameters, µx, σ2

x, σ2, β0, and
β1, respectively.

(a) Construct the ordinary least squares (OLS) estimator of β1.
Is the OLS estimator unbiased for β1? Why or why not?

For simplification, we define zi = xi − µ. Then, in order to find the
OLS estimator of β1 we must minimize the sum of the squared errors,

S(β0, β1) =

n∑
i=1

(yi − β0 − β1zi)
2

(1)

∂S

∂β0
= −2

n∑
i=1

(yi − β0 − β1zi) = 0 (2)

∂S

∂β1
= −2

n∑
i=1

zi (yi − β0 − β1zi) = 0 (3)

We are left with the following set of equations,
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n∑
i=1

(
yi − β̂0 − β̂1zi

)
= 0 and

n∑
i=1

zi

(
yi − β̂0 − β̂1zi

)
= 0 (4)

Beginning with the equation on the left of (4), we have that,

nȳ − nβ̂0 − nβ̂1z̄ = 0 (5)

β̂0 = ȳ − β̂1z̄ (6)

Now the right of equation (4) provides us with β̂1,

n∑
i=1

ziyi − zi(ȳ − β̂1z̄)− β̂1z
2
i = 0 (7)

n∑
i=1

ziyi − ziȳ + ziβ̂1z̄ − β̂1z
2
i = 0 (8)

n∑
i=1

ziyi − ȳ

n∑
i=1

zi + β̂1z̄

n∑
i=1

zi − β̂1

n∑
i=1

z2i = 0 (9)

n∑
i=1

ziyi − nȳz̄ − β̂1

(
−nz̄2 +

n∑
i=1

z2i

)
= 0 (10)

β̂1 =
(
∑n

i=1 ziyi)− nȳz̄

(
∑n

i=1 z
2
i )− nz̄2

(11)

With slight modification and further derivation, this becomes,

β̂1 =

∑n
i=1(zi − z̄)(yi − ȳ)∑n

i=1 (zi − z̄)
2 (12)

Substituting in for zi and z̄ yields,

β̂1 =

∑n
i=1(xi − µ− x̄+ µ)(yi − ȳ)∑n

i=1 (xi − µ− x̄+ µ)
2 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1 (xi − x̄)
2 (13)
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In other words, shifting every point along the x-axis does not change
the slope of the fitted line (which is to be expected).

The result is unbiased. We have from (11) that,

β̂1 =

∑n
i=1(zi − z̄)yi

(
∑n

i=1 z
2
i )− nz̄2

=

∑n
i=1(xi − x̄)yi

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(14)

E[β̂1|xi] =

∑n
i=1(xi − x̄)E[yi|xi]

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(15)

E[β̂1|xi] =

∑n
i=1(xi − x̄)(β0 + β1(xi − µ))

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(16)

E[β̂1|xi] =

∑n
i=1 xiβ0 − x̄β0 + xiβ1(xi − µ)− x̄β1(xi − µ)

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(17)

E[β̂1|xi] =

∑n
i=1 xiβ1(xi − µ)− x̄β1(xi − µ)

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(18)

E[β̂1|xi] =
β1

∑n
i=1(xi − x̄)(xi − µ)

(
∑n

i=1(xi − µ)2)− n(x̄− µ)2
(19)

Simplifying the numerator and denominator yields,

E[β̂1|xi] =
β1

∑n
i=1 x

2
i − nx̄2∑n

i=1 x
2
i − nx̄2

= β1 (20)

And since,

E[β̂1] = E[E[β̂1|xi]] = E[β1] = β1 (21)

We have that β̂1 is an unbiased estimator for β1.
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(b) Construct an estimator for σ2. Is the estimator unbiased for
σ2? Why or why not?

We begin with the following estimate of sample variance,

σ̂2 =
1

n

n∑
i=1

(ϵi − ϵ̄)2 (22)

Furthermore, we have that,

ϵ̄ =
1

n

n∑
i=1

ϵi =
1

n

n∑
i=1

yi − β̂0 − β̂1(xi − µ) (23)

Though we can replace β̂0 from (6),

ϵ̄ =
1

n

n∑
i=1

yi − ȳ + β̂1(x̄− µ)− β̂1(xi − µ) = 0 (24)

So, we can simply write our estimator for σ2 as,

σ̂2 =
1

n

n∑
i=1

ϵ2i =
1

n

n∑
i=1

(yi − ŷi)
2 (25)

This estimator is biased, though we can produce an unbiased estima-
tor. We begin by rearranging our calculation of nσ̂2,
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n∑
i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − β̂0 − β̂1zi)
2

=

n∑
i=1

(yi − ȳ + β̂1z̄ − β̂1zi)
2

=

n∑
i=1

[(yi − ȳ)− β̂1(zi − z̄)]2

=

n∑
i=1

(yi − ȳ)2 − 2β̂1(zi − z̄)(yi − ȳ) + (zi − z̄)2

=

(
n∑

i=1

y2i

)
− nȳ2 − Szzβ̂

2
1

(26)

Now, taking the expected value yields,

E

[
n∑

i=1

(yi − ŷi)
2

]
= E

[
n∑

i=1

y2i

]
− E[nȳ2]− E[Szzβ̂

2
1 ]

=

n∑
i=1

E[y2i ]− nE[ȳ2]− SzzE[β̂2
1 ]

=

(
n∑

i=1

V ar(yi) + E[yi]
2

)
+ n

(
V ar(ȳ) + E[ȳ]2

)
+ Szz

(
V ar(β̂1) + E[β̂1]

2
)

(27)

An extensive expansion yields,

E

[
n∑

i=1

(yi − ŷi)
2

]
= σ2(n− 2) (28)

Meaning that our original estimator would be unbiased had we used
this n− 2 factor. Therefore the following is an unbiased estimator of
σ2,
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σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)
2 (29)

(c) Derive the conditional variance of the OLS estimator of β1

in (a) and construct an estimator of this conditional vari-
ance. Is the estimator unbiased for the conditional variance?
[Note: conditional means “conditional on x”.]

Here we calculate the unconditional variance,

V ar(β̂1|x) = V ar

(∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1 (xi − x̄)
2

)

= V ar

(∑n
i=1(xi − x̄)yi∑n
i=1 (xi − x̄)

2

)

= V ar

(∑n
i=1(xi − x̄)(β0 + β1(xi − µ) + ϵi)∑n

i=1 (xi − x̄)
2

) (30)

Where the only random variable is associated with the errors, so,

V ar(β̂1|x) =
1∑n

i=1(xi − x̄)2
V ar(ϵi) =

σ2∑n
i=1(xi − x̄)2

(31)

(d) Derive the unconditional variance of the OLS estimator of
β1 in (a). Is the unconditional variance equal to the condi-
tional variance in (c)?

We know that,

V ar(β̂1) = V ar(E[β̂1|x]) + E[V ar(β̂1|x)] (32)

V ar(β̂1) = V ar(β1) + E[V ar(β̂1|x)] = E[V ar(β̂1|x)] (33)

V ar(β̂1) = E

[
σ2∑n

i=1(xi − x̄)2

]
= σ2E

[
1∑n

i=1(xi − x̄)2

]
(34)
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(e) Construct an estimator for the expectation E[y] using model
M1.

We have that,

E[y] = E[β̂0 + β̂1(x− µ) + ϵ] = β̂0 + β̂1E[x− µ] + E[ϵ] (35)

E[y] = β̂0 + β̂1(x̄− µ) (36)

So we call this an estimator of y,

ŷ = β̂0 + β̂1(x̄− µ) (37)

(f) Construct an estimator for E[y] not using the regression
model.

The most straightforward estimator for y would be,

ŷ =
1

n

n∑
i=1

yi (38)

(g) Are the two estimators in (e) and (f) equal? Why or why
not?

The estimators are equal, as we can manipulate (38) into (37),

ŷ =
1

n

n∑
i=1

β̂0 + β̂1(xi − µ) + ϵi (39)

ŷ =
1

n

(
nβ̂0 + β̂1(

n∑
i=1

xi − nµ) +

n∑
i=1

ϵi

)
(40)

ŷ = β̂0 + β̂1(x̄− µ) (41)
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Where the error term is eliminated because we know that the sum of
the errors must be zero.

2. Consider a regression model y = β0+β1(x−µ)+ϵ where x is a non-
random regressor and µ is a real number whose value may be
known or unknown. Discuss whether the ordinary least-squares
estimator of the slope β1 is always unbiased and whether it al-
ways has the smallest variance compared to any estimator of β1,
irrespective of what the value of β0 is. State assumptions in your
discussion. Be careful about the word “any”.

First we outline the following three conditions:

(1) V ar(ϵi) = σ2 ∀i
(2) Cov(ϵi, ϵj) = 0 ∀i, j
(3) E[ϵi] = 0 ∀i

Now, when all three conditions are met, it is true that β1 is always un-
biased. If, however, we have that the variance is not constant across the
errors (violation of (1)), then β1 would be biased. β1 would also be biased
if either of the other two conditions were violated.

With all three conditions satisfied, the Gauss–Markov theorem applies,
meaning that β1 has the smallest variance with respect to the class of
unbiased estimators. However, there are other biased estimators which
could possess a smaller variance. We could imagine a degenerate estima-
tor (perhaps taking the form of something like a step function) which could
reduce the variance. Additionally, the James-Stein estimator purports to
be a biased estimator with lower variance.

3. Select 25 rows from Table B.3. and complete the following:

(a) Fit a simple linear regression model relating gasoline mileage
y (miles per gallon) to engine displacement xl (cubic inches).

Observe the attached code. The result is:

ŷ = 33.25− 0.047x1 (42)
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(b) Construct the analysis-of-variance table and test for signif-
icance of regression.

Observe the attached code, where the resulting table is displayed.

(c) What percent of the total variability in gasoline mileage
is accounted for by the linear relationship with engine dis-
placement?

Observe the attached code. This is given by the resulting R2 value
of 74.7%.

(d) Find a 95% CI on the mean gasoline mileage if the engine
displacement is 275 in.3.

Observe the attached code. The resulting 95% confidence interval is
(19.680, 21.146).

(e) Suppose that we wish to predict the gasoline mileage ob-
tained from a car with a in.3 engine. Give a point estimate
of mileage. Find a 95% prediction interval on the mileage.

Observe the attached code. The resulting 95% prediction interval is
(16.677, 24.148).

(f) Compare the two intervals obtained in parts (d) and (e).
Explain the difference between them. Which is wider, and
why?

It is evident that the prediction interval obtained in part (e) is wider
than the confidence interval obtained in part (d). This is because
the prediction interval estimates an interval on a future observation,
which must take into account the error from the model, as well as
the observation itself. The confidence interval is only concerned with
the error from the model.
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Data Loading and Selection

WARNING *** file size (10909) not 512 + multiple of sector size (512) 
WARNING *** OLE2 inconsistency: SSCS size is 0 but SSAT size is non-zero 

Part (a)

beta_0 value:  33.24580559847236 
beta_1 value:  -0.04666509130971887 

In [7]: # Load Data 
 
import pandas as pd 
df = pd.read_excel(r'--MASKED--\linear_regression_5e_data_sets\linear_regression_5e_dat

In [15]: # Selected and View Data 
 
use = df[['y','x1']] 
sample = use.sample(25) 
x = list(sample['x1']) 
y = list(sample['y']) 
print('x-values: ', x) 
print('y-values: ', y) 

In [20]: ## Means of x and y Data 
 
barx = sum(x)/len(x) 
bary = sum(y)/len(y) 

In [45]: ## Calculation of Model Parameters 
 
Sxy = 0 
Sxx = 0 
for i in range(len(x)): 
    Sxy += (x[i]-barx)*(y[i]-bary) 
    Sxx += (x[i]-barx)**2 
b1 = Sxy/Sxx 
b0 = bary - b1*barx 
print('beta_0 value: ', b0) 
print('beta_1 value: ', b1) 

In [46]: ## Viewing the Model 
 
%matplotlib inline 
import matplotlib.pyplot as plt 
plt.figure(figsize=(10,10)) 
plt.title('Gasoline Mileage as a Function of Engine Displacement') 
plt.xlabel('x') 
plt.ylabel('y') 
plt.scatter(x,y) 
plt.plot([min(x),max(x)],[b1*min(x)+b0, b1*max(x)+b0]) 
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[<matplotlib.lines.Line2D at 0x1b420308880>]

Part (b)

Type Sum Squares DoF Mean Square F_0

0 Regression 669.837655 1 669.838 213.616

1 Residual 226.151545 23 3.13571 -

Out[46]:

In [48]: ## Analysis of variance 
 
types = ['Regression', 'Residual', 'Total'] 
SS = [b1*Sxy, tot, b1*Sxy + tot] 
degf = [1, len(y)-2, len(y)-1] 
MS = [b1*Sxy, MS_res, '-'] 
F0 = [b1*Sxy/MS_res, '-', '-'] 
 
pd.DataFrame({'Type':types, 'Sum Squares': SS, 'DoF': degf, 'Mean Square': MS, 'F_0':F0

Out[48]:
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Type Sum Squares DoF Mean Square F_0

2 Total 895.989200 24 - -

Part(c)

r^2 value:   0.7475956798276959 

Part(d)

95% CI for Predicted Value:    ( 19.680255583284502 ,  21.14555539331484 ) 

Part(e)

95% PI for Predicted Value:    ( 16.677190996026695 ,  24.148619980572647 ) 

In [51]: ## R^2 
 
r2 = 1 - (SS[1]/SS[2]) 
print('r^2 value:  ', r2) 

In [52]: ## Confidence Interval 
 
tot = 0 
for i in range(len(y)): 
    tot += (y[i] - (b0+b1*x[i]))**2 
MS_res = (tot/(len(y)-2))**0.5 
radical = (MS_res*( (1/len(y)) + (((275-barx)**2)/Sxx )  ))**0.5 
 
pred_val = b0 + 275*b1 
err = 2.068658*radical 
print('95% CI for Predicted Value:    (',pred_val-err,', ',pred_val+err,')') 

In [53]: ## Prediction Interval 
 
tot = 0 
for i in range(len(y)): 
    tot += (y[i] - (b0+b1*x[i]))**2 
MS_res = (tot/(len(y)-2))**0.5 
radical = (MS_res*(1+ (1/len(y)) + (((275-barx)**2)/Sxx )  ))**0.5 
 
pred_val = b0 + 275*b1 
err = 2.068658*radical 
print('95% PI for Predicted Value:    (',pred_val-err,', ',pred_val+err,')') 


