625.661 - Homework Six

Eric Niblock

April 9, 2022

- 1. A study was conducted attempting to relate home ownership to family income. Twenty households were selected and family income was estimated, along with information concerning home ownership (y = 1 indicates yes and y = 0 indicates no). Randomly select 15 rows and complete the following.
 - (a) Fit a logistic regression model to the response variable y. Use a simple linear regression model as the structure for the linear predictor.

The attached PDF contains solutions to this problem. A logistic regression model was fit and the following parameters were determined: $\beta_0 = -8.9731, \beta_1 = 0.0002.$

(b) Does the model deviance indicate that the logistic regression model from part (a) is adequate?

The attached PDF contains solutions to this problem. The model deviance does indicate that the logistic regression model is adequate. The deviance divided by n - p is close to unity (1.206), and at an α -level of 0.05 for χ^2_{14} , we have that p = 0.26. Therefore, we cannot reject the null hypothesis that the model is adequate.

(c) Provide an interpretation of the parameter β_1 in this model.

The attached PDF contains solutions to this problem. Since the model only contains one regressor, we have that,

$$\hat{O}_R = e^{\beta_1} = e^{0.000207} = 1.000207 \tag{1}$$

In other words, for every additional dollar earned (everytime x_1 increases by one), there is a 0.000207% increase in the odds of home ownership. β_1 describes the relationship between changes in income to changes in the odds of home ownership.

(d) Expand the linear predictor to include a quadratic term in income. Is there any evidence that this quadratic term is required in the model?

The attached PDF contains solutions to this problem. There is no evidence that the quadratic term is required in this model. The partial deviance, $D(\beta_2|\beta_1)$, was calculated at 2.971. This value is smaller than the critical chi-squared statistic given by $\chi^2_{0.05,1} = 3.841$. This suggests that at a significance level of $\alpha = 0.05$, we cannot reject the null hypothesis that $\beta_2 = 0$. Therefore, there is no evidence that the quadratic term is needed in the model.

- 2. Myers [1990] presents data on the number of fractures (y) that occur in the upper seams of coal mines in the Appalachian region of western Virginia. Four regressors were reported: $x_1 =$ inner burden thickness (feet), the shortest distance between seam floor and the lower seam; $x_2 =$ percent extraction of the lower previously mined seam; $x_3 =$ lower seam height (feet); and $x_4 =$ time (years) that the mine has been in operation. Randomly select only 30 rows of the data. Complete the following.
 - (a) Fit a Poisson regression model to these data using the log link.

The attached PDF contains solutions to this problem. A Poisson regression was fit to the data using a log link function.

(b) Does the model deviance indicate that the model from part(a) is satisfactory?

The attached PDF contains solutions to this problem. The model deviance does indicate that the logistic regression model is adequate. The deviance divided by n - p is close to unity (0.823), and at an α -level of 0.05 for χ^2_{26} , we have that p = 0.72. Therefore, we cannot reject the null hypothesis that the model is adequate.

(c) Perform a type 3 partial deviance analysis of the model parameters. Does this indicate that any regressors could be removed from the model?

The attached PDF contains solutions to this problem. A Type 3 partial deviance analysis was performed by finding $D(\beta_i|\beta_{j\neq i})$ for $i \in \{1, 2, 3, 4\}$. Each partial deviance was compared to the critical χ_1^2 value of 3.841 for $\alpha = 0.05$. Since every value fell above the critical value, no regressor was determined to be insignificant, and every regressor should remain in the model.

(d) Compute Wald statistics for testing the contribution of each regressor to the model. Interpret the results of these test statistics.

The attached PDF contains solutions to this problem. The Wald statistics are given in the z column of the model summary. The Wald statistic for x_3 suggests that the regressor x_3 is insignificant.

(e) Find approximate 95% Wald confidence intervals on the model parameters.

The attached PDF contains solutions to this problem. The 95% confidence intervals are provided in the model summary. The confidence interval for x_3 contains 0, as expected.

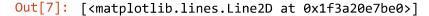
```
In [2]: import pandas as pd
import numpy as np
import statsmodels.api as sm
from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod import families
```

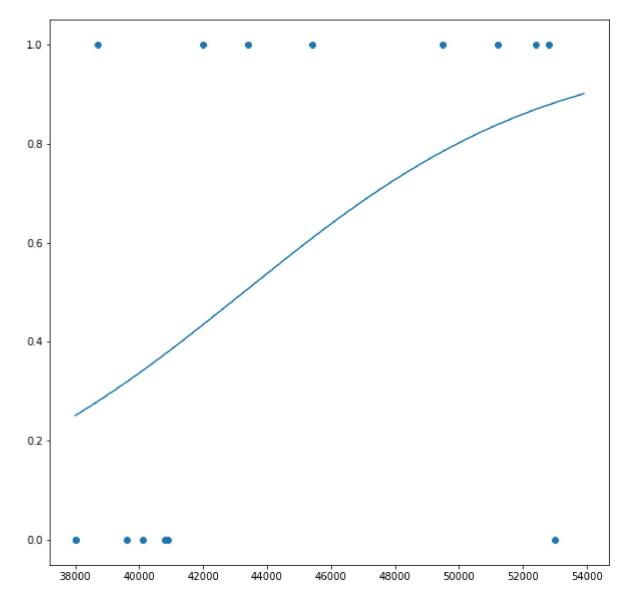
Problem 1(a)

In [4]: n = 15

```
sample = data.sample(n)
sample = data.loc[[3,11,7,10,0,2,13,14,5,8,1,18,12,9,19]]
X = np.array(sample['Income'])
y = np.array(sample['Owner Status'])
sample
```

Out[4]:


	Income	Owner Status
3	43400	1
11	40100	0
7	40800	0
10	38700	1
0	38000	0
2	39600	0
13	38000	0
14	42000	1
5	53000	0
8	45400	1
1	51200	1
18	40900	0
12	49500	1
9	52400	1
19	52800	1


In [5]:	$X = sm.add_constant(X)$
	<pre>res = GLM(y,X,family=families.Binomial()).fit()</pre>
	<pre>print(res.summary())</pre>

Generalized Linear Model Regression Results

=======================================	=====		======			=======================================	
Dep. Variable:			У	No. (Observations	5:	15
Model:			GLM	Df Re	esiduals:		13
Model Family:		Bino	mial	Df Mo	odel:		1
Link Function:		1	ogit	Scale	e:		1.0000
Method:			IRLS	Log-I	Likelihood:		-8.4428
Date:	h	led, 13 Apr	2022	Devia	ance:		16.886
Time:		09:1	7:55	Pears	son chi2:		16.6
No. Iterations:			4				
Covariance Type:		nonro	bust				
	======		=====	=====			
	coef	std err		z	P> z	[0.025	0.975]
const -8	.9731	5.270	-1	.703	0.089	-19.302	1.356
x1 0	.0002	0.000	1	.712	0.087	-3.01e-05	0.000
		0.000	1	.712 ======	0.087	-3.01e-05	0.000

```
In [7]: import matplotlib.pyplot as plt
%matplotlib inline
sx = np.arange(38000,54000,100)
ps = res.params
sy = [1/(1+np.exp(-1*(ps[0]+i*ps[1]))) for i in sx]
plt.figure(figsize=(10,10))
plt.scatter(X[:,1],y)
plt.plot(sx,sy)
```


Problem 1(b)

In [104]: print('Deviance/(n-p): ', 16.886/(15-1))

Deviance/(n-p): 1.2061428571428572

Problem 1(d)

In [14]: newX = np.zeros((len(X),3))
 newX[:,:2] = X
 newX[:,2] = X[:,1]**2

In [103]: newX[:,:2] = X
newX[:,2] = X[:,1]**2
newX

```
Out[103]: array([[1.0000e+00, 4.34000e+04, 1.88356e+09],
        [1.0000e+00, 4.01000e+04, 1.60801e+09],
        [1.0000e+00, 4.08000e+04, 1.66464e+09],
        [1.0000e+00, 3.87000e+04, 1.49769e+09],
        [1.0000e+00, 3.80000e+04, 1.44400e+09],
        [1.0000e+00, 3.96000e+04, 1.56816e+09],
        [1.0000e+00, 3.80000e+04, 1.56816e+09],
        [1.00000e+00, 4.20000e+04, 1.76400e+09],
        [1.00000e+00, 5.30000e+04, 1.76400e+09],
        [1.00000e+00, 4.54000e+04, 2.80900e+09],
        [1.00000e+00, 5.12000e+04, 2.62144e+09],
        [1.00000e+00, 4.09000e+04, 1.67281e+09],
        [1.00000e+00, 4.95000e+04, 2.45025e+09],
        [1.00000e+00, 5.24000e+04, 2.74576e+09],
        [1.00000e+00, 5.28000e+04, 2.78784e+09]])
```

In [17]: res = GLM(y,newX,family=families.Binomial()).fit() print(res.summary())

Generalized Linear Model Regression Results

	=================			================		
Dep. Varia	ble:		y No.	Observation	s:	15
Model:		GL	M Df R	esiduals:		12
Model Fami	ly:	Binomia	l Df≬	lodel:		2
Link Funct	ion:	logi	t Scal	.e:		1.0000
Method:		IRL	S Log-	Likelihood:		-6.9573
Date:	L	wed, 13 Apr 202	2 Devi	ance:		13.915
Time:		11:09:4	2 Pear	son chi2:		16.4
No. Iterat	ions:		5			
Covariance	Type:	nonrobus	t			
			========	==============		
	coef	std err	z	P> z	[0.025	0.975]
const	-144.7134	95.517	-1.515	0.130	-331.924	42.497
x1	0.0062	0.004	1.484	0.138	-0.002	0.014
x2	-6.541e-08	4.52e-08	-1.447	0.148	-1.54e-07	2.32e-08
	================		=======	==============		

In [19]: print('D(B1) - D(B): ', 16.886 - 13.915)

D(B1) - D(B): 2.971

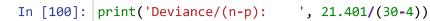
Problem 2(a)

In

[3,	1,	230, 65 , 42 , 6.9],
	0,	125, 70 , 45 , 1.0],
[4,	4,	75, 65 , 68 , 0.5],
[5,	1,	70, 65 , 53 , 0.5],
[6,	2,	65, 70 , 46 , 3.0],
[7,	0,	65, 60 , 62 , 1.0],
[8,	0,	350, 60 , 54 , 0.5],
[9,	4,	350, 90 , 54 , 0.5],
[10,	4,	160, 80 , 38 , 0.0],
[11,	1,	145, 65 , 38 , 10.0],
[12,	4,	145, 85 , 38 , 0.0],
[13,	1,	180, 70 , 42 , 2.0],
[14,	5,	43, 80, 40, 0.0],
[15,	2,	42, 85 , 51 , 12.0],
[16,	5,	42, 85 , 51 , 0.0],
[17,	5,	45, 85 , 42 , 0.0],
[18,	5,	83, 85, 48, 10.0],
[19,	0,	300, 65 , 68 , 10.0],
[20,	5,	190, 90, 84, 6.0],
[21,	1,	145 , 90 , 54 , 12.0],
[22,	1,	510, 80, 57, 10.0],
[23,	3,	65, 75 , 68 , 5.0],
[24,	3,	470, 90, 90, 9.0],
[25,	2,	300, 80 , 165 , 9.0],
[26,	2,	275, 90, 40, 4.0],
[27,	ø,	420, 50, 44, 17.0],
[28,	1,	65 , 80 , 48 , 15.0],
[29,	5,	40 , 75 , 51 , 15.0],
[30,	2,	900, 90, 48, 35.0],
[31,	3,	95 , 88 , 36 , 20.0],
[32,	3,	40 , 85 , 57 , 10.0],
[33,	3,	140 , 90 , 38 , 7.0],
[34,	0,	150, 50, 44, 5.0],
[35,	0,	
[36,	2,	80,85,96,5.0],
[37,	2, 0,	145, 65, 72, 9.0],
[38,	0, 0,	100, 65, 72, 9.0],
L ,	3,	150 , 80 , 48 , 3.0],
[39	و ر	· · · · •
[39, [40.	2	150 80 48 00 1
[40,	2, 3	150, 80, 48, 0.0], 210, 75, 42, 2,0]
[40, [41,	З,	210 , 75 , 42 , 2.0],
[40, [41, [42,	3, 5,	210 , 75 , 42 , 2.0], 11 , 75 , 42 , 0.0],
[40, [41,	З,	210 , 75 , 42 , 2.0],

Out[98]:

	Obs	У	x1	x2	x 3	x4
37	38.0	0.0	100.0	65.0	72.0	9.0
41	42.0	5.0	11.0	75.0	42.0	0.0


JHUS6 - Jupyter Notebook

_	Obs	У	x1	x2	x3	x4
17	18.0	5.0	83.0	85.0	48.0	10.0
3	4.0	4.0	75.0	65.0	68.0	0.5
25	26.0	2.0	275.0	90.0	40.0	4.0
7	8.0	0.0	350.0	60.0	54.0	0.5
30	31.0	3.0	95.0	88.0	36.0	20.0
0	1.0	2.0	50.0	70.0	52.0	1.0
16	17.0	5.0	45.0	85.0	42.0	0.0
33	34.0	0.0	150.0	50.0	44.0	5.0
31	32.0	3.0	40.0	85.0	57.0	10.0
32	33.0	3.0	140.0	90.0	38.0	7.0
26	27.0	0.0	420.0	50.0	44.0	17.0
10	11.0	1.0	145.0	65.0	38.0	10.0
4	5.0	1.0	70.0	65.0	53.0	0.5
12	13.0	1.0	180.0	70.0	42.0	2.0
9	10.0	4.0	160.0	80.0	38.0	0.0
20	21.0	1.0	145.0	90.0	54.0	12.0
35	36.0	2.0	80.0	85.0	96.0	5.0
14	15.0	2.0	42.0	85.0	51.0	12.0
15	16.0	5.0	42.0	85.0	51.0	0.0
22	23.0	3.0	65.0	75.0	68.0	5.0
38	39.0	3.0	150.0	80.0	48.0	3.0
34	35.0	0.0	80.0	60.0	96.0	5.0
19	20.0	5.0	190.0	90.0	84.0	6.0
36	37.0	0.0	145.0	65.0	72.0	9.0
2	3.0	0.0	125.0	70.0	45.0	1.0
21	22.0	1.0	510.0	80.0	57.0	10.0
18	19.0	0.0	300.0	65.0	68.0	10.0
5	6.0	2.0	65.0	70.0	46.0	3.0

In [99]:	$X = sm.add_constant(X)$
	<pre>res = GLM(y,X,family=families.Poisson()).fit()</pre>
	<pre>print(res.summary())</pre>

	Generali	zed Line	ar Mode	el Regr	ression Resul	ts	
<pre>====================================</pre>	======= Thu,	14 Apr 10:1	2022 4:58 5	Df Res Df Moo Scale: Log-Li Deviar	ikelihood:		30 25 4 1.0000 -41.682 21.401 19.5
Covariance Type:	:	nonro	bust ======				
	coef	std err		z	P> z	[0.025	0.975]
x1 -0 x2 0 x3 -0	.4214 .0038 .0656 .0039 .0592	1.355 0.002 0.016 0.008 0.027	-2 4 -0	.525 .264 .173 .485 .185	0.012 0.024 0.000 0.627 0.029	-6.077 -0.007 0.035 -0.020 -0.112	-0.766 -0.001 0.096 0.012 -0.006

Problem 2(b)

Deviance/(n-p): 0.8231153846153846

Problem 2(c)

In [101]:	<pre>for ind in res =</pre>	<pre>n [[2,3,4],[1,3,4],[1,2,4],[1,2,3]]: GLM(y,X[:,ind],family=families.Poisson()).fit() ('D(B'+str(c)+' B): ', res.deviance - 21.401)</pre>
	D(B1 B):	16.1012971451708
	D(B2 B):	36.410134503819975
	D(B3 B):	10.586867186596827

```
D(B4|B): 9.767909881361216
```