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1. A study was conducted attempting to relate home ownership
to family income. Twenty households were selected and family
income was estimated, along with information concerning home
ownership (y = 1 indicates yes and y = 0 indicates no). Ran-
domly select 15 rows and complete the following.

(a)

(b)

(c)

Fit a logistic regression model to the response variable y.
Use a simple linear regression model as the structure for
the linear predictor.

The attached PDF contains solutions to this problem. A logistic re-
gression model was fit and the following parameters were determined:
Bo = —8.9731, 81 = 0.0002.

Does the model deviance indicate that the logistic regres-
sion model from part (a) is adequate?

The attached PDF contains solutions to this problem. The model
deviance does indicate that the logistic regression model is adequate.
The deviance divided by n — p is close to unity (1.206), and at an
a-level of 0.05 for x?,, we have that p = 0.26. Therefore, we cannot
reject the null hypothesis that the model is adequate.

Provide an interpretation of the parameter ; in this model.

The attached PDF contains solutions to this problem. Since the
model only contains one regressor, we have that,



Op = et = 0000207 _ 1 000207 (1)

In other words, for every additional dollar earned (everytime x; in-
creases by one), there is a 0.000207% increase in the odds of home
ownership. (1 describes the relationship between changes in income
to changes in the odds of home ownership.

(d) Expand the linear predictor to include a quadratic term in
income. Is there any evidence that this quadratic term is
required in the model?

The attached PDF contains solutions to this problem. There is no
evidence that the quadratic term is required in this model. The par-
tial deviance, D(532]81), was calculated at 2.971. This value is smaller
than the critical chi-squared statistic given by x§ g5, = 3.841. This
suggests that at a significance level of o = 0.05, we cannot reject the
null hypothesis that 5 = 0. Therefore, there is no evidence that the
quadratic term is needed in the model.

2. Myers [1990] presents data on the number of fractures (y) that
occur in the upper seams of coal mines in the Appalachian region
of western Virginia. Four regressors were reported: x; = inner
burden thickness (feet), the shortest distance between seam floor
and the lower seam; xz, = percent extraction of the lower previ-
ously mined seam; x5 = lower seam height (feet); and z, = time
(years) that the mine has been in operation. Randomly select
only 30 rows of the data. Complete the following.

(a) Fit a Poisson regression model to these data using the log
link.

The attached PDF contains solutions to this problem. A Poisson
regression was fit to the data using a log link function.



(b)

(c)

(d)

(e)

Does the model deviance indicate that the model from part
(a) is satisfactory?

The attached PDF contains solutions to this problem. The model
deviance does indicate that the logistic regression model is adequate.
The deviance divided by n — p is close to unity (0.823), and at an
a-level of 0.05 for y3s, we have that p = 0.72. Therefore, we cannot
reject the null hypothesis that the model is adequate.

Perform a type 3 partial deviance analysis of the model pa-
rameters. Does this indicate that any regressors could be
removed from the model?

The attached PDF contains solutions to this problem. A Type 3
partial deviance analysis was performed by finding D(3;|5;.:) for
i € {1,2,3,4}. Each partial deviance was compared to the critical
X3 value of 3.841 for a = 0.05. Since every value fell above the criti-
cal value, no regressor was determined to be insignificant, and every
regressor should remain in the model.

Compute Wald statistics for testing the contribution of each
regressor to the model. Interpret the results of these test
statistics.

The attached PDF contains solutions to this problem. The Wald
statistics are given in the z column of the model summary. The
Wald statistic for x3 suggests that the regressor x3 is insignificant.

Find approximate 95% Wald confidence intervals on the
model parameters.

The attached PDF contains solutions to this problem. The 95% con-
fidence intervals are provided in the model summary. The confidence
interval for x3 contains 0, as expected.
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import pandas as pd

import numpy as np

import statsmodels.api as sm

from statsmodels.genmod.generalized_linear_model import GLM
from statsmodels.genmod import families

Problem 1(a)

data = pd.DataFrame({ 'Income': [38000, 51200, 39600, 43400, 47700, 53000, 41500,
38000, 42000, 54000, 51700, 39400, 40900, 52800],
'Owner Status': [o,1,0,1,0,0,1,0,1,1,1,0,1,0,1,1,1,0,0,1]})

n = 15
sample = data.sample(n)
sample = data.loc[[3,11,7,19,0,2,13,14,5,8,1,18,12,9,19]]

X = np.array(sample['Income'])
y = np.array(sample[ 'Owner Status'])
sample

Income Owner Status

3 43400 1
11 40100 0
7 40800 0
10 38700 1
0 38000 0
2 39600 0
13 38000 0
14 42000 1
5 53000 0
8 45400 1
1 51200 1
18 40900 0
12 49500 1
9 52400 1
19 52800 1
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In [5]: X = sm.add_constant(X)
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res = GLM(y,X,family=families.Binomial()).fit()

print(res.summary())

Generalized Linear Model Regression Results

Dep. Variable:
Model:

Model Family:
Link Function:
Method:

Date:

Time:

No. Iterations:
Covariance Type:

GLM
Binomial
logit
IRLS

Wed, 13 Apr 2022

09:17:55
4
nonrobust

No. Observations:
Df Residuals:

Df Model:

Scale:
Log-Likelihood:
Deviance:

Pearson chi2:

coef
const -8.9731
x1 0.0002

-1.703
1.712

-19.302
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In [7]: import matplotlib.pyplot as plt
%matplotlib inline

sX = np.arange(38000,54000,100)
ps = res.params
sy = [1/(1+np.exp(-1*(ps[0]+i*ps[1]))) for i in sx]

plt.figure(figsize=(10,10))
plt.scatter(X[:,1],y)
plt.plot(sx,sy)

Out[7]: [<matplotlib.lines.Line2D at Ox1f3a20e7be0d>]
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In [104]:

In [14]:

In [103]:

out[103]:

Problem 1(b)

print('Deviance/(n-p):

Deviance/(n-p):

Problem 1(d)
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', 16.886/(15-1))

newX = np.zeros((len(X),3))

newX[:,:2]
newX[:,2]

newX[:,:2]
newX[:,2]
newx

array([[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.
[1.

= X
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= X[:,1]**2

00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
00000e+00,
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.34000e+04,
.01000e+04,
.08000e+04,
.87000e+04,
.80000e+04,
.96000e+04,
.80000e+04,
.20000e+04,
.30000e+04,
.54000e+04,
.12000e+04,
.09000e+04,
.95000e+04,
.24000e+04,
.28000e+04,
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.88356e+09],
.60801e+09],
.66464e+09],
.49769e+09],
.44400e+09],
.56816e+09],
.44400e+09],
.76400e+09],
.80900e+09],
.06116e+09],
.62144e+09],
.67281e+09],
.45025e+09],
.74576e+09],
.78784e+091]1])
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In [17]: res = GLM(y,newX,family=families.Binomial()).fit()

print(res.summary())

Generalized Linear Model Regression Results
Dep. Variable: y No. Observations: 15
Model: GLM  Df Residuals: 12
Model Family: Binomial Df Model: 2
Link Function: logit Scale: 1.0000
Method: IRLS Log-Likelihood: -6.9573
Date: Wed, 13 Apr 2022 Deviance: 13.915
Time: 11:09:42 Pearson chi2: 16.4
No. Iterations: 5
Covariance Type: nonrobust

coef std err z P>|z]| [0.025 0.975]
const -144.7134 95.517 -1.515 0.130 -331.924 42.497
x1 0.0062 0.004 1.484 0.138 -0.002 0.014
X2 -6.541e-08 4.52e-08 -1.447 0.148 -1.54e-07 2.32e-08

In [19]: print('D(B1) - D(B): , 16.886 - 13.915)
D(B1) - D(B): 2.971
Problem 2(a)
localhost:8888/notebooks/JHUS6.ipynb#Problem-1(a)
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In [98]: data = pd.DataFrame(np.array([[1, 2, 50, 79 , 52 , 1l.90],
[2, 1, 230, 65 , 42 , 6.9 1,
[3, 0, 125, 76, 45 , 1.0 1,
[4, 4, 75, 65 , 68 , ©0.5],
(5, 1, 70, 65 , 53 , ©0.5],
(6, 2, 65, 70 , 46 , 3.0 ],
[7, 0, 65, 60 , 62 , 1.0 ],
(s, 9, 350, 60 , 54 , 0.5 1],
[9, 4, 350, 99 , 54 , 0.5 1,
[10, 4, 160, 8 , 38 , 0.0 1,
[11, 1, 145, 65 , 38 , 10.0 1,
[12, 4, 145, 85 , 38 , 0.0 1,
[13, 1, 180, 70 , 42 , 2.0 1,
[14, 5, 43, 8 , 40 , 0.0 1,
[15, 2, 42, 8 , 51 , 12.0 1,
[16, 5, 42, 85 , 51 , 0.0 1,
[17, 5, 45, 8 , 42 , 0.0 1,
[18, 5, 83, 85 , 48 , 10.90 1,
[19, 0, 300, 65 , 68 , 10.0 1,
[20, 5, 199, 9% , 8 , 6.0 1,
[21, 1, 145, 9 , 54 , 12.0 1,
[22, 1, 516 , 8 , 57 , 10.0 1,
[23, 3, 65, 75 , 68 , 5.0 1,
[24, 3, 470, 99 , 9% , 9.0 1,
[25, 2, 300, 89 , 165, 9.0 1,
[26, 2, 275, %9 , 40 , 4.0 1,
[27, 0, 420, 50 , 44 , 17.0 1,
[28, 1, 65 , 8 , 48 , 15.0 ],
[29, 5, 4 , 75 , 51 , 15.0 1,
[30, 2, 90 , 90 , 48 , 35.0 1,
[31, 3, 95 , 88 , 36 , 20.0 1,
[32, 3, 4 , 8 , 57 , 10.0 1,
[33, 3, 140 , 9% , 38 , 7.0 1,
[34, 0, 150 , 50 , 44 , 5.0 1,
[35, 0, 89 ,60 , 9% , 5.0 1,
[36, 2, 89 , 8 , 9% , 5.0 1,
[37, 0, 145 , 65 , 72 , 9.0 1,
[38, 0, 100 , 65 , 72 , 9.0 1,
[39, 3, 150 , 80 , 48 , 3.0 1,
[40, 2, 150 , 80 , 48 , 0.0 1,
[41, 3, 200 , 75 , 42 , 2.0 1,
[42, 5, 11 , 75 , 42 , 0.0 1,
[43, 0, 100 , 65, 60 , 25.0 1,
[44, 3, 50 , 88 , 60 , 20.0]]), columns=['0Obs"','y"',"'x1","'x2","'x3", "x¢
n = 30

sample = data.sample(n)

y = np.array(sample[['y']])

X = np.array(sample[['x1','x2",'x3"','x4"]])
sample

Oout[98]:
Obs y x1 x2 x3 x4

37 38.0 0.0 1000 650 720 9.0

41 420 50 11.0 750 420 0.0
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Obs y x1 x2 x3 x4

17 18.0 50 83.0 850 480 10.0
3 40 40 750 650 680 05
25 260 2.0 2750 90.0 40.0 4.0
7 80 0.0 350.0 600 540 05
30 310 3.0 950 88.0 36.0 20.0
0 1.0 20 50.0 700 520 1.0
16 17.0 5.0 45.0 85.0 420 0.0
33 340 0.0 150.0 50.0 44.0 5.0
31 320 3.0 40.0 850 57.0 10.0
32 330 3.0 140.0 90.0 38.0 7.0
26 27.0 0.0 420.0 50.0 44.0 17.0
10 11.0 1.0 145.0 65.0 38.0 10.0
4 50 1.0 700 650 53.0 0.5
12 13.0 1.0 180.0 70.0 420 2.0
9 10.0 4.0 160.0 80.0 38.0 0.0
20 21.0 1.0 145.0 90.0 54.0 120
35 360 2.0 80.0 850 96.0 5.0
14 150 2.0 420 850 51.0 12.0
15 16.0 50 420 850 51.0 0.0
22 230 3.0 650 750 68.0 5.0
38 39.0 3.0 150.0 80.0 48.0 3.0
34 350 0.0 80.0 60.0 96.0 5.0
19 20.0 50 190.0 90.0 84.0 6.0
36 37.0 0.0 1450 65.0 720 9.0
2 30 0.0 125.0 70.0 450 1.0
21 220 1.0 510.0 80.0 57.0 10.0
18 19.0 0.0 300.0 65.0 68.0 10.0
5 6.0 20 650 700 46.0 3.0
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In [99]: X =

sm.add_constant(X)
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res = GLM(y,X,family=families.Poisson()).fit()

print(res.summary())

Generalized Linear Model Regression Results

Dep. Variable:
Model:

Model Family:
Link Function:
Method:

Date:

Time:

No. Iterations:
Covariance Type:

Thu, 14 Apr 2022

y No. Observations:

GLM Df Residuals:
Poisson Df Model:
log Scale:
IRLS Log-Likelihood:
Deviance:

coef
const -3.4214
x1 -0.0038
x2 0.0656
X3 -0.0039
x4 -0.0592

10:14:58 Pearson chi2:

5

nonrobust
std err z P>|z]|
1.355 -2.525 0.012
0.002 -2.264 0.024
0.016 4.173 0.000
0.008 -9.485 0.627
0.027 -2.185 0.029

Problem 2(b)

In [100]: print('Deviance/(n-p):
Deviance/(n-p):
Problem 2(c)

In [101]: c=1

', 21.401/(30-4))

0.8231153846153846

for ind in [[2,3,4],[1,3,4]1,[1,2,4]1,[1,2,3]]:
res = GLM(y,X[:,ind],family=families.Poisson()).fit()

print('D(B'+str(c)+'|B): ', res.deviance - 21.401)
c+=1

D(B1|B): 16.1012971451708

D(B2|B):  36.410134503819975

D(B3|B): 10.586867186596827

D(B4|B): 9.767909881361216

localhost:8888/notebooks/JHUS6.ipynb#Problem-1(a)

8/8



