
12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 1/7

Introduction to Data Science

Homework 2

Student Name: Eric Niblock

Student Netid: ejn9259

Part 1: Case study (5 Points)
Read this article (http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html) in the
New York Times.
Use what we've learned in class and from the book to describe how one could set Target's
problem up as a predictive modeling problem, such that they could have gotten the results that
they did. Formulate your solution as a proposed plan using our data science terminology.
Include all the aspects of the data mining process, and be sure to include the motivation for
predictive modeling and give a sketch of a solution. Be precise but concise.

------ANSWER-------Target's problem could be modeled as a predictive modeling problem by
employing a supervised learning technique to answer the question: "Is this customer pregnant,"
where the outcome would be a binary 'yes' or 'no' with an associated probability. This outcome is
the variable (label) we hope to predict, given various other variables (features) that we can collect
from a consumer's visit to Target. The most important features would probably contain information
about the purchase of certain products related to pregnancy, such as "scent-free soap and extra-
big bags of cotton balls, in addition to hand sanitizers and washcloths." The goal is to train on a
sample gathered from the population of pregnant customers, and not-pregnant customers, which
can then be deployed on customers whose label we do not know (pregnant and not-pregnant).

The sample we hope to use can be taken from Target's baby shower registrar, with the consent of
the residing mothers, to use as a group of individuals who have the label 'pregnant'. The sample
related to those who are not-pregnant could reasonably be drawn from the whole population of
Target consumers, unless they are on the baby shower registrar. Though there may be some
individuals who are in fact pregnant within this sample, that number is likely to be low and
negligible. All of the customers chosen will be assigned an ID, and purchasing history and future
purchases can be attached to their account. Using these two groups, we can run some simple
statistical analysis, such as getDfSummary() from below, in order to see if there is correlation
between certain product purchases and being pregnant/not-pregnant. Then, these two samples
can be combined, and split into training and validation sets. Using the results of our simple
statistical analysis, we will have, hopefully, generated a rough idea of certain products which may
signal that a mother is pregnant. We can then use these products as features, and attempt to train
a model on our training data. The model can then be validated on the test data.

http://www.nytimes.com/2012/02/19/magazine/shopping-habits.html

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 2/7

The motivation for creating such a model is obvious. Given the ability to predict if a certain
consumer is pregnant, Target can target this consumer with specific advertising and promotions in
order to increase sales with this population. Furthermore, as the article noted, after mothers have a
child, shopping habits often change. So not only is there the benefit of increasing sales to pregnant
mothers, but a successful predictive model of this sort has potential to draw in new shoppers for
the rest of their lives.------ANSWER-------

Part 2: Exploring data in the command line (4 Points)
For this part we will be using the data file located in "data/advertising_events.csv" . This file
consists of records that pertain to some online advertising events on a given day. There are 4
comma separated columns in this order: userid , timestamp , domain , and action . These
fields are of type int , int , string , and int respectively. Answer the following questions
using Linux/Unix bash commands. All questions can be answered in one line (sometimes, with
pipes)! Some questions will have many possible solutions. Don't forget that in IPython notebooks
you must prefix all bash commands with an exclamation point, i.e. "!command arguments" .

[Hints: You can experiment with whatever you want in the notebook and then delete things to
construct your answer later. You can also use a bash shell (i.e., EC2 or a Mac terminal) and then
just paste your answers here. Recall that once you enter the "!" then filename completion should
work.]

Here (https://opensource.com/article/17/2/command-line-tools-data-analysis-linux) is a good linux
command line reference.

1. How many records (lines) are in this file? (look up 'wc' command)

In [83]:

2. How many unique users are in this file? (hint: consider the 'cut' command and use pipe operator
'|')

In [84]:

3. Rank all domains by the number of visits they received in descending order. (hint: consider the
'cut', 'uniq' and 'sort' commands and the pipe operator).

'wc' is not recognized as an internal or external command,
operable program or batch file.

'cut' is not recognized as an internal or external command,
operable program or batch file.

Commands for this were run in Git Bash, and the code used was copied here with
!wc -l advertising_events.csv

Output: 10341 advertising_events.csv

Commands for this were run in Git Bash, and the code used was copied here with
!cut -d ',' -f 1 advertising_events.csv | uniq -u | wc -l

Output: 10321

https://opensource.com/article/17/2/command-line-tools-data-analysis-linux

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 3/7

In []:

4. List all records for the user with user id 37. (hint: this can be done using 'grep')

In []:

Part 3: Dealing with data Pythonically (16 Points)

1. (1 Point) Download the data set "data/ads_dataset.tsv" and load it into a Python Pandas
data frame called ads .

In [1]:

2. (4 Points) Write a Python function called getDfSummary() that does the following:

Takes as input a data frame
For each variable in the data frame calculates the following features:

number_nan to count the number of missing not-a-number values
Ignoring missing, NA, and Null values:

number_distinct to count the number of distinct values a variable can take on

Commands for this were run in Git Bash, and the code used was copied here with
!cut -d ',' -f 3 advertising_events.csv | sort | uniq -c | sort -r

Output:
3114 google.com
2092 facebook.com
1036 youtube.com
1034 yahoo.com
1022 baidu.com
513 wikipedia.org
511 amazon.com
382 qq.com
321 twitter.com
316 taobao.com

Commands for this were run in Git Bash, and the code used was copied here with
!awk -F, '{if ($1 == 37) print $0}' advertising_events.csv

Output:
37,648061658,google.com,0
37,642479972,google.com,2
37,644493341,facebook.com,2
37,654941318,facebook.com,1
37,649979874,baidu.com,1
37,653061949,yahoo.com,1
37,655020469,google.com,3
37,640878012,amazon.com,0
37,659864136,youtube.com,1
37,640361378,yahoo.com,1
37,653862134,facebook.com,0
37,648828970,youtube.com,0

import pandas as pd

ads = pd.read_csv(r'C:\Users\Eric\ads_dataset.tsv', sep='\t')

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 4/7

mean , max , min , std (standard deviation), and 25% , 50% , 75% to correspond
to the appropriate percentiles

All of these new features should be loaded in a new data frame. Each row of the data frame
should be a variable from the input data frame, and the columns should be the new summary
features.
Returns this new data frame containing all of the summary information

Hint: The pandas describe() method returns a useful series of values that can be used here.

In [2]:

3. How long does it take for your getDfSummary() function to work on your ads data frame?
Show us the results below.

Hint: use %timeit

In [3]:

4. (2 Points) Using the results returned from getDfSummary() , which fields, if any, contain
missing NaN values?

92.2 ms ± 2.33 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

def getDfSummary(input_data):
 nans = []
 for c in input_data.columns:
 nans.append(input_data[c].isna().sum())
 df = pd.DataFrame({'number_nan':nans})
 df = df.transpose()
 df.columns = input_data.columns

 s = input_data.describe()
 s = s.append(df)

 unique = []
 for c in input_data.columns:
 unique.append(input_data[c].nunique())
 df = pd.DataFrame({'number_distinct':unique})
 df = df.transpose()
 df.columns = input_data.columns
 s = s.append(df)
 s = s.transpose()
 s = s.drop(labels='count', axis=1)

 return(s)

%timeit getDfSummary(ads)

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 5/7

In [14]:

5. (4 Points) For the fields with missing values, does it look like the data is missing at random? Are
there any other fields that correlate perfectly, or make it more likely that the data is missing? If
missing, what should the data value be? Don't just show code here. Please explain your answer.
[Edit this to ask for more details on why they are 0]

Hint: create another data frame that has just the records with a missing value. Get a summary of
this data frame using getDfSummary() and compare the differences. Do some feature
distributions change dramatically?

In [15]:

Out[14]:
mean std min 25% 50% 75% max number_nan number_distinct

buy_freq 1.240653 0.782228 1.0 1.0 1.0 1.0 15.0 52257.0 10.0

Out[15]:
mean std min 25% 50% 75% max nu

isbuyer 0.042632 0.202027 0.0000 0.0 0.0 0.000000 1.00000

buy_freq 1.240653 0.782228 1.0000 1.0 1.0 1.000000 15.00000

visit_freq 1.852777 2.921820 0.0000 1.0 1.0 2.000000 84.00000

buy_interval 0.210008 3.922016 0.0000 0.0 0.0 0.000000 174.62500

sv_interval 5.825610 17.595442 0.0000 0.0 0.0 0.104167 184.91670

expected_time_buy -0.198040 4.997792 -181.9238 0.0 0.0 0.000000 84.28571

expected_time_visit -10.210786 31.879722 -187.6156 0.0 0.0 0.000000 91.40192

last_buy 64.729335 53.476658 0.0000 18.0 51.0 105.000000 188.00000

last_visit 64.729335 53.476658 0.0000 18.0 51.0 105.000000 188.00000

multiple_buy 0.006357 0.079479 0.0000 0.0 0.0 0.000000 1.00000

multiple_visit 0.277444 0.447742 0.0000 0.0 0.0 1.000000 1.00000

uniq_urls 86.569343 61.969765 -1.0000 30.0 75.0 155.000000 206.00000

num_checkins 720.657592 1275.727306 1.0000 127.0 319.0 802.000000 37091.00000

y_buy 0.004635 0.067924 0.0000 0.0 0.0 0.000000 1.00000

n = getDfSummary(ads)
n[n['number_nan'] > 0]

This code shows that 'buy_freq' is the only field which contains nan values

getDfSummary(ads)

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 6/7

In [16]:

------ANSWER------- Many features change when we observe a dataframe with only the rows
containing nan values. Observe the variables 'isbuyer', 'buy_interval', 'expected_time_buy', and
'multiple_buy', as they correlate perfectly with 'buy_freq' being a nan value - specifically, these
values are all zero when 'buy_freq' is a nan value. All of the nan values should be replaced with
zeros, since 'buy_freq' being nan seems to suggest that that an individual has not made a
purchase (since all of the correlated variables would, in fact, be zero, if 'buy_freq' was zero), and
thus zero would represent this. ------ANSWER-------

6. (4 Points) Which variables are binary?

Out[16]:
mean std min 25% 50% 75% max nu

isbuyer 0.000000 0.000000 0.0000 0.0 0.0 0.000000 0.00000

buy_freq NaN NaN NaN NaN NaN NaN NaN

visit_freq 1.651549 2.147955 1.0000 1.0 1.0 2.000000 84.00000

buy_interval 0.000000 0.000000 0.0000 0.0 0.0 0.000000 0.00000

sv_interval 5.686388 17.623555 0.0000 0.0 0.0 0.041667 184.91670

expected_time_buy 0.000000 0.000000 0.0000 0.0 0.0 0.000000 0.00000

expected_time_visit -9.669298 31.239030 -187.6156 0.0 0.0 0.000000 91.40192

last_buy 65.741317 53.484622 0.0000 19.0 52.0 106.000000 188.00000

last_visit 65.741317 53.484622 0.0000 19.0 52.0 106.000000 188.00000

multiple_buy 0.000000 0.000000 0.0000 0.0 0.0 0.000000 0.00000

multiple_visit 0.255602 0.436203 0.0000 0.0 0.0 1.000000 1.00000

uniq_urls 86.656180 61.996711 -1.0000 30.0 75.0 155.000000 206.00000

num_checkins 721.848518 1284.504018 1.0000 126.0 318.0 803.000000 37091.00000

y_buy 0.003024 0.054904 0.0000 0.0 0.0 0.000000 1.00000

ads_nan = ads[ads['buy_freq'].isnull()]
getDfSummary(ads_nan)

12/20/2020 Homework_2_ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework_2_ejn9259.ipynb 7/7

In [82]:

Out[82]:
mean std min 25% 50% 75% max number_nan number_distinct

isbuyer 0.042632 0.202027 0.0 0.0 0.0 0.0 1.0 0.0 2.0

multiple_buy 0.006357 0.079479 0.0 0.0 0.0 0.0 1.0 0.0 2.0

multiple_visit 0.277444 0.447742 0.0 0.0 0.0 1.0 1.0 0.0 2.0

y_buy 0.004635 0.067924 0.0 0.0 0.0 0.0 1.0 0.0 2.0

c = getDfSummary(ads)
c[c['number_distinct'] == 2]

This code shows that 'isbuyer', 'multiple_buy', 'multiple_visit', and 'y_buy'

