
12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 1/9

Introduction to Data Science

Homework 3

Student Name: Eric Niblock

Student Netid: ejn9259

Part 1 (5 Points)
Assume that and are discrete random variables. The formulas for Mutual Information,
Entropy and Conditional Entropy are given by:

Show mathematically that , where
. Give the derivation below (note, this can be done using

Latek math notation, which renders nicely. See above. Feel free to do it by hand and submit an
image of your proof).

𝑋 𝑌

Mutual Information = 𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔∑
𝑦∈𝑌
∑
𝑥∈𝑋

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

Entropy = 𝐻(𝑌) = − 𝑝(𝑦) ⋅ 𝑙𝑜𝑔(𝑝(𝑦))∑
𝑦∈𝑌

Conditional Entropy = 𝐻(𝑌 ∣ 𝑋) = 𝑝(𝑥) ⋅𝐻(𝑌 ∣ 𝑋 = 𝑥)∑
𝑥∈𝑋

Mutual Information = Information Gain

Information Gain = 𝐻(𝑌)–𝐻(𝑌 ∣ 𝑋)

We begin by the definition of mutual information, and move to the definition of information gain,

𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔 = 𝑝(𝑥, 𝑦) ⋅ (𝑙𝑜𝑔 − 𝑙𝑜𝑔(𝑝(𝑦)))∑
𝑦∈𝑌
∑
𝑥∈𝑋

𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦) ∑
𝑦∈𝑌
∑
𝑥∈𝑋

𝑝(𝑥, 𝑦)

𝑝(𝑥)

= 𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔 − 𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔(𝑝(𝑦))∑
𝑦∈𝑌
∑
𝑥∈𝑋

𝑝(𝑥, 𝑦)

𝑝(𝑥) ∑
𝑦∈𝑌
∑
𝑥∈𝑋

= 𝑝(𝑥)𝑝(𝑦|𝑥) ⋅ 𝑙𝑜𝑔 − 𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔(𝑝(𝑦))∑
𝑦∈𝑌
∑
𝑥∈𝑋

𝑝(𝑥)𝑝(𝑦|𝑥)

𝑝(𝑥) ∑
𝑦∈𝑌
∑
𝑥∈𝑋

= 𝑝(𝑥)𝑝(𝑦|𝑥) ⋅ 𝑙𝑜𝑔(𝑝(𝑦|𝑥)) − 𝑝(𝑥, 𝑦) ⋅ 𝑙𝑜𝑔(𝑝(𝑦))∑
𝑦∈𝑌
∑
𝑥∈𝑋

∑
𝑦∈𝑌
∑
𝑥∈𝑋

= 𝑝(𝑥)
(

𝑝(𝑦|𝑥) ⋅ 𝑙𝑜𝑔(𝑝(𝑦|𝑥))
)
−

(
𝑝(𝑥, 𝑦)

)
𝑙𝑜𝑔(𝑝(𝑦))∑

𝑥∈𝑋
∑
𝑦∈𝑌

∑
𝑦∈𝑌

∑
𝑥∈𝑋

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 2/9

= − 𝑝(𝑥)𝐻(𝑌 |𝑋 = 𝑥) − 𝑝(𝑦)𝑙𝑜𝑔(𝑝(𝑦))∑
𝑥∈𝑋

∑
𝑦∈𝑌

= 𝐻(𝑌) −𝐻(𝑌 |𝑋)

Part 2 - Preparing a Training Set and Training a Decision Tree (10
Points)
This is a hands-on task where we build a predictive model using Decision Trees discussed in
class. For this part, we will be using the data in cell2cell_data.csv .

These historical data consist of 39,859 customers: 19,901 customers that churned (i.e., left the
company) and 19,958 that did not churn (see the "churndep" variable). Here are the data set's
11 possible predictor variables for churning behavior:

Pos. Var. Name Var. Description
----- ---------- ---

1 revenue Mean monthly revenue in dollars
2 outcalls Mean number of outbound voice calls
3 incalls Mean number of inbound voice calls
4 months Months in Service
5 eqpdays Number of days the customer has had his/her current equ
ipment
6 webcap Handset is web capable
7 marryyes Married (1=Yes; 0=No)
8 travel Has traveled to non-US country (1=Yes; 0=No)
9 pcown Owns a personal computer (1=Yes; 0=No)
10 creditcd Possesses a credit card (1=Yes; 0=No)
11 retcalls Number of calls previously made to retention team

The 12th column, the dependent variable "churndep" , equals 1 if the customer churned, and 0
otherwise.

1. Load the data and prepare it for modeling. Note that the features are already processed for you,
so the only thing needed here is split the data into training and testing. Use pandas to create two
data frames: train_df and test_df, where train_df has 80% of the data chosen uniformly at random
without replacement (test_df should have the other 20%). Also, make sure to write your own code
to do the splits. You may use any random() function in numpy but DO NOT use the data splitting
functions from Sklearn.

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 3/9

In [88]:

2. If we had to, how would we prove to ourselves or a colleague that our data was indeed randomly
sampled on X? And by prove, I mean empirically, not just showing this person our code. Don't
actually do the work, just describe in your own words a test you could here. Hint: think about this in
terms of selection bias and use notes from our 2nd lecture.

In order to effectively prove to a colleague that the data above is void of selection bias, we could
start by explaining selection bias. If the splitting of our data was affected by selection bias, this
would imply that the probability of finding a specific value corresponding to any feature changes
between our sample and when our sample is split (here, we are assuming that the sample itself is
void of selection bias). There are a number of possible methods we could employ to show that this
is not the case. For example, if we were to run the split method 10,000 times while tracking the
placement of a specific record, we should find that on average a record appears in the training
data ~80% of the time, and in the test data ~20% of the time. This would help to show that records
are being randomly assigned into either training or test buckets, without reference to feature
values. Furthermore, after performing 10,000 splits, the mean of any feature within the training
data should be approximately equal to the mean of the same feature in the testing data, and also
the mean of the feature from the totality of the sample. That method is displayed below, and as is
clearly shown, the resulting means are approximately equal.

import pandas as pd
import numpy as np

header_list = ["revenue", "outcalls", "incalls", "months", "eqpdays", "webcap", "
 "travel", "pcown", "creditcd", "retcalls", "churndep"]
data = pd.read_csv("cell2cell_data.csv", names=header_list)

ind = np.arange(len(data))
np.random.shuffle(ind)
train_select = ind[0:int(0.8*len(ind))]
test_select = ind[int(0.8*len(ind)):]

train_df = data.iloc[train_select]
test_df = data.iloc[test_select]

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 4/9

In [89]:

3. Now build and train a decision tree classifier using DecisionTreeClassifier() on train_df to
predict the "churndep" target variable. Make sure to use criterion='entropy' when
instantiating an instance of DecisionTreeClassifier() . For all other settings you should use
all of the default options.

In [90]:

4. Using the resulting model from 2.3, show a bar plot of feature names and their feature
importance (hint: check the attributes of the DecisionTreeClassifier() object directly in
IPython or check the manual!). Make sure the bar plot is sorted by increasing feature importance
values.

Mean Revenue (10000 trails) Training Data: 58.63412180415116
Mean Revenue (10000 trails) Test Data: 58.632593832287846
Mean Revenue Actual (sample): 58.63381620211279

THIS CODE IS NOT REQUIRED BY THE HOMEWORK AND SIMPLY SHOWS THE RESULTS OF (2)

mean_train = 0
mean_test = 0

header_list = ["revenue", "outcalls", "incalls", "months", "eqpdays", "webcap", "
 "travel", "pcown", "creditcd", "retcalls", "churndep"]
data = pd.read_csv("cell2cell_data.csv", names=header_list)

for t in range(10000):

 ind = np.arange(len(data))
 np.random.shuffle(ind)
 train_select = ind[0:int(0.8*len(ind))]
 test_select = ind[int(0.8*len(ind)):]

 train_df = data.iloc[train_select]
 test_df = data.iloc[test_select]
 mean_train += np.mean(train_df['revenue'])
 mean_test += np.mean(test_df['revenue'])
print('Mean Revenue (10000 trails) Training Data: ', mean_train/10000)
print('Mean Revenue (10000 trails) Test Data: ', mean_test/10000)
print('Mean Revenue Actual (sample): ', np.mean(data['revenue']))

from sklearn import tree
import matplotlib.pyplot as plt

train_X = train_df.drop(['churndep'], axis=1)
train_Y = train_df['churndep']

clf = tree.DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(train_X, train_Y)

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 5/9

In [91]:

5. Is the relationship between the top 3 most important features (as measured here) negative or
positive? If your marketing director asked you to explain the top 3 drivers of churn, how would you
interpret the relationship between these 3 features and the churn outcome? What "real-life"
connection can you draw between each variable and churn? Make sure to state your answer, and
not just show code.

Out[91]: Text(0.5, 1.0, 'Relative Feature Importance')

 %matplotlib inline

importance = list(clf.feature_importances_)
labels = list(data.columns)
importance, labels = zip(*sorted(zip(importance, labels)))

plt.figure(figsize=(15,10))
plt.bar(labels, importance, color='green')
plt.xlabel("Feature")
plt.ylabel("Relative Importance")
plt.title("Relative Feature Importance")

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 6/9

In [92]:

Given the correlation values between each of the most important features and the value of the
churn variable, we find that revenue and churn are negatively correlated, which makes sense given
that customers which are paying more are more likely to be burdened by high costs, and more
willing to give up on a product if it will save them significant amounts of money (they might switch
to a competitor). We also find that the number of days someone has had their equipment and
churn are positively correlated, which makes sense given that customers who have had their
equipment for a long time are more likely to be dissatisfied with a product's performance because it
is becoming old and out of date. Finally, the mean number of outbound calls and the rate of churn
are negatively correlated, which makes sense because customers who are dissatisfied with a
product are less likely to utilize it.

6. Using the classifier built in 2.3, try predicting "churndep" on both the train_df and test_df data
sets. What is the accuracy on each? What is your explanation on the difference (or lackthereof)
between the two accuracies?

In [93]:

The classifier has been allowed too much freedom, and has over fit the training data. Essentially,
the model has memorized the training data, producing very high variance, and low generalizability.
Hence, when deployed on the testing data, the model's inflexibility shows, and the variability that
exists between the training set and the testing set cannot be handled by the classifier.

Part 3 - Finding a Good Decision Tree (10 Points)
The default options for your decision tree may not be optimal. We need to analyze whether tuning
the parameters can improve the accuracy of the classifier. For the following options
min_samples_split and min_samples_leaf :

PointbiserialrResult(correlation=-0.01315213458110532, pvalue=0.018845294419533
56)
PointbiserialrResult(correlation=0.10870353708289446, pvalue=2.0486264798571453
e-84)
PointbiserialrResult(correlation=-0.03587104671292903, pvalue=1.481395878601493
e-10)

Training Accuracy: 0.9998431962868881
Testing Accuracy: 0.5296036126442549

import matplotlib.pyplot as plt
import numpy as np
from scipy import stats

print(stats.pointbiserialr(train_df['revenue'],train_df['churndep']))
print(stats.pointbiserialr(train_df['eqpdays'],train_df['churndep']))
print(stats.pointbiserialr(train_df['outcalls'],train_df['churndep']))

test_X = test_df.drop(['churndep'], axis=1)
test_Y = test_df['churndep']

print('Training Accuracy: ' + str(clf.score(train_X, train_Y)))
print('Testing Accuracy: ' + str(clf.score(test_X, test_Y)))

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 7/9

1. Generate a list of 10 values of each for the parameters min_samples_split and
min_samples_leaf.

In [94]:

2. Explain in words your reasoning for choosing the above ranges.

Though this process is very much so dependent on a trial-and-error type of approach, an
understanding of min_samples_split and min_samples_leaf helped to inform my decision. Without
adjustment, tree.DecisionTreeClassifier uses a min_samples_split value of 2, implying that a new
branch of the decision tree can be produced provided that at least two samples remain to be split.
This is not very productive, because it encourages the classifier to split samples down to a very
fine level of granularity (with min_samples_leaf defaulting to one, the classifier is encouraged to
continue splitting until each sample has its own branch, ending in a leaf). These default parameters
encouraged overfitting. To correct for these, the above ranges were chosen because, given that
our target variable is binary, it seems likely that a larger value concerning min_samples_split and
min_samples_leaf would prevent the loss of generalizability associated with the splitting of the data
into leafs that only possess one data point. We know that the data contains around 20,000 records
corresponding to each value of our target variable, and as such we know that an absolute upper
bound for min_samples_leaf should be 20,000 (otherwise a split would not be allowed).
Furthermore, we know this value is still too large, because we want to be able to obtain a
reasonable level of depth (perhaps at least a depth level of 2, which would correspond to roughly
10,000). A very similar line of thought is applied to min_samples_split.

3. For each combination of values in 3.1 (there should be 100), build a new classifier and check
the classifier's accuracy on the test data. Plot the test set accuracy for these options. Use the
values of min_samples_split as the x-axis and generate a new series (line) for each of
min_samples_leaf .

In [95]:

min_samples_split_values = [2,20,70,100,300,500,700,1000,2000,10000]
min_samples_leaf_values = [2,20,70,100,300,500,700,1000,2000,10000]

import matplotlib.pyplot as plt
%matplotlib inline

series = []
for leaf in min_samples_leaf_values:
 splits_vals = []
 for split in min_samples_split_values:
 clf = tree.DecisionTreeClassifier(criterion='entropy', min_samples_split=
 clf = clf.fit(train_X, train_Y)
 score = clf.score(test_X, test_Y)
 splits_vals.append(score)
 series.append(splits_vals)

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 8/9

In [96]:

4. Which configuration returns the best accuracy? What is this accuracy? (Note, if you don't see
much variation in the test set accuracy across values of min_samples_split or min_samples_leaf,
try redoing the above steps with a different range of values), and reassess your answer in Q3.2.

In [101]:

5. If you were working for a marketing department, how would you use your churn production
model in a real business environment? Explain why churn prediction might be good for the
business and how one might improve churn by using this model.

Best leaf and split vals: 300 700
Test Accuracy: 0.5977170095333668

plt.figure(figsize=(15,10))
for l in range(len(series)):
 plt.plot(min_samples_split_values, series[l], label=str(min_samples_leaf_valu
 plt.legend()

largest = 0
for leaf in range(len(min_samples_leaf_values)):
 for split in range(len(min_samples_split_values)):
 if series[leaf][split] > largest:
 indexs = [leaf, split]
 largest = series[leaf][split]
print('Best leaf and split vals: ', min_samples_leaf_values[indexs[0]], min_sampl
print('Test Accuracy: ', series[indexs[0]][indexs[1]])

12/27/2020 Homework 3 ejn9259 - Jupyter Notebook

localhost:8888/notebooks/Homework 3 ejn9259.ipynb 9/9

Churn prediction models are important in business for a number of reasons. Having a model such
as this, a sales and marketing division could regularly assess their customer database and predict
which users, subscribers, customers, etc. are at risk for churning. Once this information is
obtained, customers at a high risk for churn could be provided with incentives in order to stay - this
could mean personalized outreach from someone within the marketing department (or another
company representative), or even discounts and special offers. Further research could be done
into the specific risk factors that are highly correlated to churn in order to provide personalized
offers to customers (if 'revenue' seems to be the predominant factor involved, offer some financial
discount/incentive, if 'eqpdays' is driving the classifier, offer a discount on upgrading to better
equipment). Overall, the model could represent a valuable tool in increasing revenue for the
company, by persuading high risk customers to stay by evaluating and assessing the factors which
made them a high risk for churning in the first place. This would also serve to decrease future
churn.

In [103]:

In []:

375 20

Out[103]: 0.5963371801304566

CODE NOT REQUIRED - OPTIMAL SOLUTION FOR FINDING BEST COMBINATION OF LEAF AND
THE BEST METHOD WOULD PROBABLY BE ONE THAT TESTS VALUES AND THEN HONES IN ON A

min_samples_split_values = [i*20 for i in range(1,20)]
min_samples_leaf_values = [i*25 for i in range(1,50)]

series = []
for leaf in min_samples_leaf_values:
 splits_vals = []
 for split in min_samples_split_values:
 clf = tree.DecisionTreeClassifier(criterion='entropy', min_samples_split=
 clf = clf.fit(train_X, train_Y)
 score = clf.score(test_X, test_Y)
 splits_vals.append(score)
 series.append(splits_vals)

largest = 0
for leaf in range(len(min_samples_leaf_values)):
 for split in range(len(min_samples_split_values)):
 if series[leaf][split] > largest:
 indexs = [leaf, split]
 largest = series[leaf][split]
print(min_samples_leaf_values[indexs[0]], min_samples_split_values[indexs[1]])
series[indexs[0]][indexs[1]]

