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Eric Niblock

September 8th, 2020

1. (True or False) Prove the following statements or provide a counterexam-
ple. Let A, B, and C be events in a probability space.

(a) If A and B are independent, then so are AC and B.

True. We know that it is the case that,

B = B ∩ (A ∪AC) (1)

B = (B ∩A) ∪ (B ∩AC) (2)

Then we can apply the probability function to both sides, noting that (B ∩ A)
and (B ∩AC) are disjoint sets. Thus,

P (B ∩AC) = P (B)− P (B ∩A) (3)

Using the property of independence on A and B, we know that P (A ∩ B) =
P (A)P (B), so,

P (B ∩AC) = P (B)− P (B)P (A) (4)

P (B ∩AC) = P (B)(1− P (A)) (5)

P (B ∩AC) = P (B)P (AC) (6)

The final line shows that the original statement is true; if A and B are inde-
pendent, then so are AC and B, since P (B ∩ AC) = P (B)P (AC) implies the
independence of B and AC .
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(b) If A and B are conditionally independent given C, then they are also
conditionally independent given CC .

False. Let A,B,C ∈ Ω, with each being defined below,

A = {1, 2, 3, 10}
B = {3, 4, 5, 10, 11}
C = {1, 2, 3, 4, 5, 6, 7, 8, 9}
Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}

(7)

We also define our probability measure so that,

P (S) =
n(S)

n(Ω)
(8)

Where the function n counts the number of elements in a set. First we find that
A,B are conditionally independent given C,

P (A ∩B |C) =
P (A ∩B ∩ C)

P (C)
=
n(A ∩B ∩ C)

n(C)
=

1

9
(9)

P (A |C) =
P (A ∩ C)

P (C)
=
n(A ∩ C)

n(C)
=

1

3
(10)

P (B |C) =
P (B ∩ C)

P (C)
=
n(B ∩ C)

n(C)
=

1

3
(11)

So,

P (A ∩B |C) = P (A |C)P (B |C) =
1

9
(12)

Now, we show that A,B are not conditionally independent given CC ,

P (A ∩B |CC) =
P (A ∩B ∩ CC)

P (CC)
=
n(A ∩B ∩ CC)

n(CC)
=

1

3
(13)
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P (A |CC) =
P (A ∩ CC)

P (CC)
=
n(A ∩ CC)

n(CC)
=

1

3
(14)

P (B |CC) =
P (B ∩ CC)

P (CC)
=
n(B ∩ CC)

n(CC)
=

2

3
(15)

So,

P (A ∩B |CC) 6= P (A |CC)P (B |CC) (16)

Therefore, if A and B are conditionally independent given C, they are not nec-
essarily conditionally independent given CC .

(c) Events in a partition cannot be independent (assume that every event
in the partition has nonzero probability).

True. Proof by contradiction. Take any two events in a partition, Si and Sj ,
and assume that they are independent with some non-zero probability. Then, it
follows from the definition of partition that,

P (Si ∩ Sj) = 0 (17)

However, assuming independence, we see that,

P (Si ∩ Sj) = P (Si)P (Sj) = 0 (18)

This implies that either P (Si) = 0 or P (Sj) = 0. Contradiction. Events in a
partition cannot be independent.

(d) If P (A|B) = 1 then P (BC |AC) = 1.

True. We note that,
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P (A|B) =
P (A ∩B)

P (B)
= 1 (19)

P (A ∩B) = P (B) (20)

A ∩B = B (21)

This implies that,

B ⊆ A (22)

Using this, we can now tackle the fact that P (BC |AC) = 1, which similarly im-
plies

P (BC |AC) =
P (BC ∩AC)

P (AC)
= 1 (23)

By application of De Morgan’s law,

P (BC ∩AC)

P (AC)
=
P ((B ∪A)C)

P (AC)
= 1 (24)

And because of the fact that B ⊂ A, we note that,

B ∪A = A (25)

P ((B ∪A)C)

P (AC)
=
P (AC)

P (AC)
= 1 (26)

So, it is true that if P (A|B) = 1 then P (BC |AC) = 1.

(e) P (B|A ∪B) ≥ P (B|A).

True. The inequality P (B|A ∪B) ≥ P (B|A) can be expressed as,
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P (B ∩ (A ∪B)

P (A ∪B)
≥ P (B ∩A)

P (A)
(27)

P ((B ∩A) ∪B)

P (A ∪B)
≥ P (B ∩A)

P (A)
(28)

P (B)

P (A ∪B)
≥ P (B ∩A)

P (A)
(29)

P (A)P (B) ≥ P (A ∩B)P (A ∪B) (30)

Now since P (A) ≤ 1 and P (B) ≤ 1, the most that the left hand side could be is
P (A)P (B) = 1. Then we have,

1 ≥ P (A ∩B)P (A ∪B) (31)

But we know this must be true, because P (A ∩ B) ≤ 1 and P (A ∪ B) ≤ 1. So
we have,

1 ≥ 1 (32)

Thus, the statement has been shown.
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2. (Probability spaces)

(a) Let (Ω,F , P ) be a probability space. Let A be an event in the σ-algebra
F , such that P (A) 6= 0, on which we want to condition. We define a
collection of events FA as the collection of the intersection of A with
all the events in F :

FA = {A ∩ F : F ∈ F} (33)

If we consider a new sample space ΩA = A, prove that FA is a valid
σ-algebra, and also that the conditional probability measure

PA(S ∩A) =
P (S ∩A)

P (A)
(34)

In order to prove that prove that FA is a valid σ-algebra, we need to satisfy the
following conditions as noted in the definition:

A σ-algebra F is a collection of subsets of Ω such that: (1) If a set S ∈ F
then SC ∈ F . (2) If the sets S1, S2 ∈ F , then S1 ∪ S2 ∈ F . This also holds
for infinite sequences; if S1, S2, ... ∈ F then ∪∞i=1Si ∈ F . (3) Ω ∈ F [Def. 1]

We begin with condition (3), which is satisfied by the problem statement. Given
that A ∈ F , we have

(A ∩A) = A = ΩA ∈ FA (35)

Now we prove (1). Take some event F ∈ F , this implies that A ∩ F and its
compliment are in FA,

(A ∩ F ) ∈ FA =⇒ (A ∩ F )C = ∅ ∪ (ΩA − F ) = (ΩA − F ) ∈ FA (36)

Choosing the right event from F will produce this compliment. We take AC∪FC ,
then

(A ∩ (AC ∪ FC)) = ∅ ∪ (A ∩ (Ω− F )) = (ΩA − F ) ∈ FA (37)
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So, to find the compliment of any event in FA which was the result from some
F ∈ F , we use event AC ∪ FC ∈ F .

Finally, we show (2). Take events F1, F2 ∈ F . Then,

(A ∩ F1), (A ∩ F2) ∈ FA =⇒ (A ∩ F1) ∪ (A ∩ F2) ∈ FA (38)

(A ∩ F1) ∪ (A ∩ F2) = A ∩ (F1 ∪ F2) ∈ FA (39)

And we know that (F1 ∪ F2) ∈ F because it is a valid σ-algebra. So, to find
the union of any two events in FA which resulted from some F1, F2 ∈ F , we use
event F1 ∪ F2 ∈ F .

Having satisfied all three conditions from Definition 1, we confirm that FA is a
valid σ-algebra. We now show that PA(S∩A) is a valid probability measure. We
must satisfy the conditions given in the definition:

A probability measure is a function defined over the sets in a σ-algebra F such
that: (1) P (S) ≥ 0 for any event S ∈ F . (2) If the sets S1, S2, ..., Sn ∈ F are
disjoint (i.e. Si ∩ Sj = ∅ for i 6= j) then

P (∪ni=1Si) =

n∑
i=1

P (Si) (40)

Similarly, for a countably infinite sequence of disjoint sets S1, S2, ... ∈ F

P ( lim
n→∞

∪ni=1Si) = lim
n→∞

n∑
i=1

P (Si) (41)

(3) P (Ω) = 1. [Def. 2]

We begin by proving (3),

PA(A ∩A) = PA(ΩA) =
P (A ∩A)

P (A)
=
P (A)

P (A)
= 1 (42)

7



We have satisfied (3), so now we show (1),

PA(S ∩A) =
P (S ∩A)

P (A)
≥ 0 (43)

But this is evident, because we know P (A) > 0 and P (S ∩ A) ≥ 0 since they
are results from a valid probability space. So (1) is satisfied. Therefore, we are
left with showing (2). Take F1, F2 ∈ F such than F1 and F2 are disjoint. Then,
A ∩ F1 and A ∩ F2 are disjoint. So we must show,

PA(F1 ∩A) + PA(F2 ∩A) = PA((F1 ∪ F2) ∩A) (44)

So,

P (F1 ∩A)

P (A)
+
P (F2 ∩A)

P (A)
=
P ((F1 ∪ F2) ∩A)

P (A)
(45)

P (F1 ∩A) + P (F2 ∩A) = P ((F1 ∪ F2) ∩A) (46)

P (F1 ∩A) + P (F2 ∩A) = P ((F1 ∩A) ∪ (F2 ∩A)) (47)

And since A ∩ F1 and A ∩ F2 are disjoint, we have,

P (F1 ∩A) + P (F2 ∩A) = P (F1 ∩A) + P (F2 ∩A) (48)

So, we have shown (2). Therefore, we have shown that PA(S ∩ A) is a valid
probability measure.

(b) Suppose we have a sample space Ω = {1, ...,M} with σ-algebra F = 2Ω,
the power set of Ω. To determine P , the probability measure, we em-
ploy the following empirical procedure:

i. Collect N data points taking values in Ω (e.g., N rolls of an M-
sided die). Call these observations x1, ..., xN .

ii. For each S ⊆ Ω,

P (S) =
number of i-values such that xi ∈ S

N
(49)
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As an example, suppose M = 2 and we flip a coin N = 10 times get-
ting 6 heads and 4 tails, where 1 denotes head and 2 denotes tail. Then

P (∅) = 0, P ({1}) = 0.6, P ({2}) = 0.4, P ({1, 2}) = 1

If P is defined using the above procedure, will it always result in a
valid probability measure? Either prove that it will, or give a coun-
terexample.

In order to show that this is a valid probability measure, we must show that it
satisfies the three conditions given in Definition 2.

Condition (1) is easily satisfied. We know that the count of i-values in x1, ..., xN
will always be positive or zero concerning every S ∈ Ω. Similarly, N will always
be positive. So, P (S) will always be positive or zero.

Condition (3) is the second easiest to satisfy, and we wish to show P (Ω) = 1. We
have,

P (Ω) =
number of i-values such that xi ∈ Ω

N
(50)

But since every xi ∈ Ω, the numerator just becomes the number of values in
x1, ..., xN . So then we have,

P (Ω) =
N

N
= 1 (51)

The final condition to satisfy is condition (2). Take any two disjoint sets S1 and
S2. Then,

P (S1) + P (S2) = P (S1 ∪ S2) (52)

n(xi ∈ S1)

N
+
n(xi ∈ S2)

N
=
n(xi ∈ (S1 ∪ S2))

N
(53)

Where function n simply implies the count of xi values in the list x1, ..., xN such
that the condition of the argument is met. Now, since S1 and S2 are disjoint,
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xi ∈ S1 ⇒ xi /∈ S2, and xi ∈ S2 ⇒ xi /∈ S1. Because there is no xi that exists
in both sets, the count of xi from each set must equal the count of xi from the
union of both sets. Therefore (2) is satisfied.

With all of the conditions satisfied, we have shown that empirical procedure is a
valid probability measure.
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3. (Testing) A company with 10 employees decides to test them for COVID-19
before they go back to work in person. From available data, they determine
that the probability of each employee being ill is 0.01. The employees have
not been in contact with each other for a while, so the events Employee i
is ill, for 1 ≤ i ≤ 10, are modeled as independent. If an employee is ill, the
test is positive with probability 0.98. If they are not ill, the test is positive
with probability 0.05.

(a) Is it reasonable to model the events Test i is positive, for 1 ≤ i ≤ 10, as
independent? From now on model them as independent whether you
think it is reasonable or not.

Given the information we have, it is somewhat reasonable to model the events
Pi = Test i is positive, as independent, which is equivalent to saying P (Pi|Pj) =
P (Pi). In words, ”knowing employee j is positive has no bearing on whether
employee i is positive.” This assumption is reasonable, because the employees
have not been in contact, and therefore employee j could not have spread the
disease to employee i. However, there could be more individuals outside of the
company which are mutual companions of i and j that could have given them the
disease. Knowing this information would ruin the notion of independence. How-
ever, given the information we have currently, it seems fairly reasonable to model
events Pi as independent, due to the lack of contact. There is also a possibility
that the tests themselves are all part of a faulty batch, though this is also unlikely.

(b) The company tests all employees. What is the probability that there
is at least one positive test?

We first define the following events: Pi = Test i is positive, PC
i = Test i is negative,

Si = i is sick, and SC
i = i is healthy. We also know the following information:

P (Si) = 0.01, P (Pi|Si) = 0.98, P (Pi|SC
i ) = 0.05. Then, the probability of one

individual testing positive is given by,

P (Pi) = P (Si)P (Pi|Si) + P (SC
i )P (Pi|SC

i )

= (0.01)(0.98) + (0.99)(0.05) = 0.0593
(54)

So, we also know the probability of i testing negative,

P (PC
i ) = 1− P (Pi) = 0.9407 (55)

We will also define the event ∪10
i=1Pi = At least one i is positive. It follows then,

due to the independence of positive tests, that,
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P (∪10
i=1Pi) = 1− P (∩10

i=1P
C
i )

= 1− (P (PC
1 )P (PC

2 )...P (PC
10))

= 1− (0.940710) = 0.4574

(56)

(c) If there is at least one positive test, what is the probability that no-
body is ill? If you make any independence or conditional independence
assumptions, please justify them.

The probability of interest is P (∩10
i=1S

C
i | ∪10

i=1 Pi). We can employ Bayes Theo-
rem to find an equality that is easier to work with,

P (∩10
i=1S

C
i | ∪10

i=1 Pi) =
P (∩10

i=1S
C
i )P (∪10

i=1Pi | ∩10
i=1 S

C
i )

P (∪10
i=1Pi)

(57)

We examine the most difficult of the term within the expression, which is,

P (∪10
i=1Pi | ∩10

i=1 S
C
i ) = 1− P (∩10

i=1P
C
i | ∩10

i=1 S
C
i ) (58)

Now, we assume conditional independence between {PC
1 , ..., P

C
10} given that no

one is ill. In other words, person i testing negative has no bearing on person j
testing negative given that everyone is healthy. Then,

P (∪10
i=1Pi | ∩10

i=1 S
C
i ) = 1− (P (PC

1 | ∩10
i=1 S

C
i )...P (PC

10 | ∩10
i=1 S

C
i )) (59)

We also make the assumption that P (PC
i | ∩10

i=1 S
C
i ) = P (PC

i |SC
i ). Then,

P (∪10
i=1Pi | ∩10

i=1 S
C
i ) = 1− (P (PC

i |SC
i ))10 = 1− (0.9510) = 0.4013 (60)

Furthermore, from the independence of events concerning employees being ill, we
have,
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P (∩10
i=1S

C
i ) = (P (SC

i ))10 = (0.99)10 = 0.9044 (61)

So then, our final answer becomes,

P (∩10
i=1S

C
i | ∪10

i=1 Pi) = 0.7934 (62)

This result is the probability that everyone is healthy given that one person tested
positive.
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4. (Student Performance) A group of researchers are interested in predicting
students performance based on different factors. To achieve this goal, they
collect some real world data. The file student.csv contains the data of
395 students’ performance in a math class and the file student.txt contains
a description of the labels. Please show your work when answering the
following questions.

(a) Based on the data, are Internet access, taking an extra paid class and
school support independent of having good grades (that is, having a
final grade above 11)?

Observe the information obtained through analysis with Python below.

Given this information, we can test if variables are independent. We define the
probability of some event, as the number of times an event occurs divided by
the total number of events. In this case, it is always the number of students
possessing some characteristic(s), divided by the total number of students. We
will say that two events, A,B, are independent if,

P (A ∩B) ≈ P (A)P (B) (63)

Where we have defined approximately equal to mean within 0.02. We can begin
by testing if having access to internet and having good grades are independent.

P (I ∩G) =
140

395
= 0.3544 (64)
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P (I) =
329

395
= 0.8329 (65)

P (G) =
162

395
= 0.4101 (66)

So,

P (I ∩G) = 0.3544 ≈ P (I)P (G) = 0.3416 (67)

So access to internet and having good grades are approximately independent.
Next we test if taking an extra paid class and having good grades are indepen-
dent.

P (P ∩G) =
74

395
= 0.1873 (68)

P (P ) =
181

395
= 0.4582 (69)

P (G) =
162

395
= 0.4101 (70)

So,

P (I ∩G) = 0.1873 ≈ P (I)P (G) = 0.1879 (71)

So taking a paid class and having good grades are approximately independent.
Next we test if having extra school support and having good grades are indepen-
dent.

P (S ∩G) =
9

395
= 0.0228 (72)

P (S) =
51

395
= 0.1291 (73)

P (G) =
162

395
= 0.4101 (74)

So,

P (S ∩G) = 0.0228 6= P (S)P (G) = 0.0530 (75)

So having extra school support and having good grades are dependent.
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(b) If we know the family size of the student, is having good grades inde-
pendent of taking an extra paid class?

Observe the information obtained through analysis with Python below.

Here, we will need to test for conditional independence on both types of family
size (this is because of our previous result: If A and B are conditionally indepen-
dent given C, then they are not necessarily also conditionally independent given
CC). Conditional independence is given by,

P (A ∩B |C) ≈ P (A |C)P (B |C) (76)

Where we have defined approximately equal to mean within 0.02. Given a family
size greater than 3 (noted at F+), we define probability as before, and we cal-
culate the following values in order to determine if taking an extra paid class is
conditionally independent of having good grades:

P (P ∩G |F+) =
48

281
= 0.1708 (77)

P (P |F+) =
130

281
= 0.4626 (78)

P (G |F+) =
109

281
= 0.3879 (79)
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So,

P (P ∩G |F+) = 0.1708 ≈ P (P |F+)P (G |F+) = 0.1795 (80)

So having good grades and taking an extra paid class are approximately condi-
tionally independent given a family size greater than 3. Now we consider their
conditional independence given a family size less than or equal to 3.

P (P ∩G |F−) =
26

114
= 0.2281 (81)

P (P |F−) =
51

114
= 0.4474 (82)

P (G |F−) =
53

114
= 0.4649 (83)

P (P ∩G |F−) = 0.2281 6= P (P |F−)P (G |F−) = 0.2080 (84)

So having good grades and taking an extra paid class are conditionally dependent
given a family size less than or equal to 3.
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