DS-GA 1002 - Homework 2

Eric Niblock
September 15th, 2020

1. (Half life) The half life of a radioactive substance is a way to quantify how
rapidly the substance decays. Given a fixed quantity of the substance, the
half time is the time that it takes for it to be reduced to half (i.e. half
of the radioactive particles have decayed). It is not immediately apparent
why the time should be the same for any quantity. Here we’ll show that it
is (probabilistically) if the particles decay following an exponential
distribution.

(a) Let ¢ be a random variable with a pdf of the form

e M, t>0
i(t) = {O otherwise (1)

where ) is a fixed constant. We define the half life ¢,,, as the number
that satisfies P({ > t.,) = 1. Compute ¢/, in terms of \. Then explain
intuitively why this is a reasonable definition for the half life.

We can integrate the PDF is order to obtain P(t > t1s,),

P(t~> t1/2) = / e Mdt = 7)\%67/“ = — e Mz — % (2)
t1/2 tiya
In(l/2 In(2
b m 0B _ 1 5

This is a reasonable definition for half life, because after this time, there is only
a 50% chance of finding that the particle has decayed. A better way of looking
at half life would be with a large number of particles, such as in a kilogram of
radioactive material. After a period of one half life, we would expect roughly
50% of the material to have decayed. The definition of half life that we found
says just that, because integrating from the value of the half life to infinity yields
50%. In other words, half of the material’s ”life” has passed, and half remains.



(b)

(c)

Compute ¢ such that P(t., < t<t)= i, and express it in terms of only
t1,. Explain why the result is consistent with the intuitive meaning of
half life.

Again, we can compute P(t), < t < t) by integrating the PDF using the appro-
priate bounds,

’

~ ¢ t 1
P(ty, <t<t)= e Mdt = —e M =—eMpe =2 (4)
t1/2 t1/2 4
1 1 In(1
1= () oA —y oA = 1 = t=— n()\/4) =2ty (5)

This result is expected given our intuition of half life. After a period of one half
life we would expect 50% of radioactive material to remain. After another half
life, we would expect 50% of this 50% of material to remain. In other words, we
would expect 25% of the overall material to remain, which is the probability that
we were originally given.

Compute P(t > kt.s,) for any integer k. Again, explain why the result
is consistent with the intuitive meaning of half life.

Again, we can compute P(f > kt. /») by integrating the PDF using the appropri-
ate bounds,

oo

k
)\ef)‘t dt = —ef)‘t ~ = eiAktl/2 = ekln(1/2) p— (1> (6)
k‘,tl/g 2

P(t > ktiy) = /

kt1/2

This result is expected given our notions regarding half life. After each half life,
we would expect half of the remaining material to decay. After one half life, we
expect half of the material to remain; two half lives, one fourth; three half lives,
one eighth; etc.. This is what our result shows.



2. (Measurements) You have access to the readings of a device that indicates
whether a radioactive particle has decayed. However you do not get a con-
tinuous reading, you get a reading every second.

(a)

(b)

A reasonable model for the time the particle takes to decay is that it
is a random variable with pdf

filt) = {3"”’ = 7)

otherwise

where ) is a fixed constant. Taking into account that the measurement
device rounds up the time and outputs an integer number of seconds
(if the time is 0.1 it outputs 1, if it is 13.4 it outputs 14), compute the
pmf of the reading from the device. What kind of random variable is
this?

The random variable that we are concerned with is discrete, and we will note it
as T; it is equal to the value of ¢ rounded up to the nearest integer. Then, we have,

So therefore, we have the pmf of Z,

e (M — 1), r€eN
pi(x) = { 0 otherwise (9)

What is the PDF of the error between your reading and the true time
of decay?

We define € to be the random variable associated with the error between pz(z)
and f;(t). Then, we begin by calculating the cdf of €, Fs(y), where 0 <y <1 so,

Fely)=Pé<y)=PUZ{i-y<i<i}) (10)

w



And since these events are all disjoint, we can write,

Fe(y)=>» Pli—y<t<i)=)_ ’ fg(t)dt:Z/ e M gt
. = =y (11)
= —e M i = (eM —1) e M =(eM-1)) (e -1

This is simply a geometric series, so we have,

Fety) = @ - 1) (== - 1) (12)

And we can obtain the pdf for é by taking the derivative of the cdf, so,

1—e

é(y) _ dFé(y) _ )\eAy <

1
% —~ - 1> (13)

Where again, 0 < y < 1. Otherwise, the pdf evaluates to 0.



3. (Call center) A company that runs a call center hires you as a consultant.
They are interested in the probability of receiving a certain number of calls
in any 10 minute interval between 8 pm and 12 am during October in order
to decide whether to hire more operators. Your task is to estimate these
probabilities from data provided by the company. In particular, you have
available two data sets:

e 2-day data: Number of calls in 10-minute intervals between 8 pm and
12 am from two days at the beginning of October.

o September data: Number of calls in 10-minute intervals between 8 pm
and 12 am from the whole month of September.

You decide to estimate the distribution of the calls in October from these
two data sets by using a parametric and a non-parametric approach.

(a) Telephone calls are often modeled using Poisson distributions. What
is the ML estimator of the parameter of a Poisson random variable
given n independent observations?

We can denote the Poisson distribution, with Z as the Poisson random variable,
as,

ATe™H

x!

pz(x;A) = P(Z = x; \) (14)

Then, given x1, ..., ,, observations, we have a likelihood function which is equal
to,

E{Ih_”’mn}(ﬂ) = P(0 = x1,...x,;0) (15)

And assuming independence of the observations, we then have,

n Gm,,e—G
Ligy, o 0) =[] PO =2::0)=]] (16)
=1



(b)

z; ,—0
|
il

r ie? - 0%ie
(L a1 (0)) = (H - )zm( -
v i=1

i=1

)

=" (@idn(9) — 0 — In(x!)) (17)

i=1

I
<
Jr
=
=
]
5
|
g
=
5

Now, in order to find what value of § maximizes this likelihood function, we take
a derivative with respect to 6 and equate it to zero.

aln(ﬁ{m17@w}(9)) — — L .
5 _0——n+7z$i (18)

This implies that,

n X
i=1Ti

Onr = (19)

Complete the code in call_center_poisson.py. This code estimates the
Poisson parameter corresponding to the 2-day data and the September
data. It compares the corresponding pmfs to the pmf of October and
computes the estimation error (using the ‘1 norm of the difference
between the distributions). Then it computes the empirical pmf of
the 2-day data and the September data and again compares them to
the pmf of October. What errors do you obtain? Submit your plots
and the code.

The following is the completed code from the call_center_poisson.py file. Only
three definitions where manipulated:



# Function to estimate the parameters of a Poisson r.v. from iid data
def poisson_ml_estimator(data):

return(sum(data)/len(data))

# Function to estimate the empirical pmf from iid data
def empirical pmf(data):

ma = max(data)
mi = min(data)
pmf = []

for d in range(int(mi), int(ma+1)):
¢ = np.count_nonzero(data == d)
pmf.append(c/len(data))

return(np.array(pmf))

# Function to compute pmf of Poisson with parameter param at x
def poisson pmf(param, x):
return((param**x)*(np.exp(-1*param))/math.factorial(x))

Running this code in conjunction with the rest of the file yielded the errors
regarding our attempt to model the calls in September and the 2-day interval.
We compared the pdfs of each of these periods and calculated the error of using
both maximum likelihood estimation, and empirical estimation. The errors by
both are

ML fitting errors
2 days: ©.43336098300266856
September: ©.5871641399725155

Monparametric fitting errors
2 days: ©.5185185185185183
September: ©.4027777777777777

Additionally, we can view the pdfs that resulted from each of these methods.
First, we have the maximum likelihood results in the following plot:



014 o9 2 days
\ -@- September
N -@- October
y. .
012 A T
0.101
0.08
0.06
0.04
] |
0.02 \ [ .
. e
: \.\‘. e
0.00 o b SU R SR B R S e i AU S SR BN SR R
0 10 20 0 0
As well as the empirical results from the following plot:
0175
2 days
-@- September
-@- October
0150
0125
A
0.100 ® ./ NN
X \ad’
‘; s "! | L |
g e v Y e
0075 ! TR
; i ¥
] ’.\ \
0.050 o / PR
. ® N VAN
- .
" .__‘\ A\
0025 e s * ey
) g e _ e
e ¥ b SN
0.000 R R  MILART S S S S
0 5 10 15 20 b1 0 3

(c) What is the method that performs best for the 2-day data? What
method is better for the September data? What does this suggest




about parametric against non-parametric estimation depending on the
amount of data available?

Maximum likelihood estimation appears to work best for the two day data, while
the empirical /non-parametric method appears to work best for the September
data. This seems to suggest that when we have small amounts of data, a para-
metric model works best, while larger amounts of data are better approximated
with non-parametric models.



4. (KDE) The train.csv, val.csv and test.csv files consist of daily average tem-
perature of New York City in March over the course of 16 years. We are
interested in the distribution of the average temperature.

(a) Plot the kernel density estimator of the daily average temperature
training data found in train.csv. You should use the Gaussian kernel
with 4 different bandwidths: 0.5, 1, 4, 10. You should submit a single
plot with the histogram of the data, and the 4 kernel density estimator
with appropriate labels in the legend. [Note: You may make use of
the functions in the sklearn library.]

Below, we have included the code used in this step, as well as the resulting plot,

import pandas as pd
import matplotlib.pyplot as plt

f = pd.read_csv( r'c:\Users\Eric\Downloads\train.csv') ## Read in data

from sklearn.neighbors import KernelDensity
import numpy as np

t = list(f[ AvgTemperature']) ## Extract data into an array
tt = [[i] for i in t]
T = np.array(tt)

X_plot = np.linspace(®e, 99, 600)[:, np.newaxis]

fig, ax = plt.subplots(figsize=(12,18))

bins = np.linspace(®, 90, 91)

ax.hist(t, bins=bins, density=True, alpha=0.3, label = 'Temperature Data Histogram') ## Create normalized histogram
ax.set_ylabel('Normalized Density')

ax.set xlabel('Temperature (Fahrenheit)')

ax.set_title( 'Normalized Density of Temperature Throughout March in NYC (16 Years)')

h = plt.xticks(np.arange(®, 91, step=10)) # Set label Llocations

for band in [@.5, 1.8, 4.0, 10.0]: # Use sklearn to create plots for each bandwidth
kde = KernelDensity(kernel="gaussian’, bandwidth=band).fit(T)
log dens = kde.score_samples(X_plot)
ax.plot(X plot[:, @], np.exp(log dens), label = 'Gaussian Kernel, bw= ‘+str(band))
ax.legend()

10



Normalized Density of Temperature Throughout March in NYC (16 Years)

0.05 1 Gaussian Kernel, bw= 0.5
A —— Gaussian Kernel, bw= 1.0
H. I —— Gaussian Kernel, bw= 4.0
(| —— Gaussian Kernel, bw= 10.0
Temperature Data Histogram
no4
= 0.03
i
[
w
=1
b=
o
2]
]
E
[=]
=
0.02
0.01 1
0.00

0 10 20 0 a 50 &0 70 #0 %0
Temperature (Fahrenheit)

(b) In this part we will use the validation data in val.csv to determine the
optimal bandwidth setting. For each bandwidth in the range 0.5, 1,
.ees 9.5, 10, perform the following calculation:

i. Compute the kernel density estimator on the training data using
the given bandwidth.

The following is the code required to compute the kernel density estimators
on the training data,

kernels = []

for band in [@.5*k for k in range(1,21)]:
kde = KernelDensity(kernel="gaussian', bandwidth=band).fit(T)
kernels.append(kde)

ii. Partition the interval [5, 80] into 15 intervals I, ..., I;5 of length 5.

11



This step was accomplished implicitly within other steps.

iii. Use the kernel density estimator to compute the probability of
temperature lying in each interval.

The following is the code required to compute the probability of temperature
lying in each interval. We created a function responsible for approximating
the integral using trapezoids,

def trap sum(a,b,N,kde):
log dens = kde.score_samples(np.linspace(a,b,N+1)[:, np.newaxis])
y = np.exp(log_dens)
y_right = y[1:]
y_ left = y[:-1]
dx = (b - a)/nN
T = (dx/2) * np.sum(y_right + y_left)

return(T)

prob_kernels = []

for ker in kernels:
p_k =[]

for a in range(®,15):
x = trap_sum(5+(a*5),10+(a*5),10000, ker)
p_k.append(x)

prob_kernels.append(p_k)

iv. Then use the data in val.csv to compute the probability tempera-
ture is in each interval.

The following is the code required to compute the compute the probability
that resulting temperatures are in each interval. We used the empirical def-
inition of probability,

val = pd.read_csv( r'c:\Users\Eric\Downloads\val.csv")

counts = []

for k in range(®,15):
v = len(val[(val[ 'AvgTemperature'] »>= 5+(5*k)) & (val['AvgTemperature'] < 10+(5*k))])
counts.append(v)

counts = np.array(counts)/len(f[ 'AvgTemperature’])

v. Finally, compute the loss defined to be the sum of the 15 square
differences between the kernel density probabilities and the vali-
dation probabilities.

12



Submit a plot of loss vs. bandwidth, and also state the bandwidth that
achieves the smallest loss.

The following is the code required to compute the loss between the kernel density
probabilities and the validation probabilities. The code and plot of the losses for
each kernel density estimation are included,

losses = []
for row in prob_kernels:
loss = @
loss_vec = np.array(row) - np.array(counts)
for e in loss_vec:
loss += e**2
losses.append(loss)

Loss as a Function of Gaussian Kernel Bandwidth

0.0150

0.0125 4

0.0100 -

0.0075 A

0.0025 4 2 b

0.0000 -

—0.0025 4

1 2 3 a 5 6 7 8 9 10
Gaussian Kernel Bandwidth

It is clear that the optimal bandwidth associated with the training data is 3.5,
because this value for the bandwidth generates the lowest loss.

13



(c) Using the optimal bandwidth from the previous part, overlay the ker-
nel density estimator (computed from the training data) on top of the
histogram for the test data.

The following is the code and resulting plot of the kernel density estimator com-
puted from the training data, with a bandwidth of 3.5, overlaid on the histogram
of the test data,

import pandas as pd
import matplotlib.pyplot as plt
test = pd.read_csv( r’'C:\Users\Eric\Downloads\test.csv')

from sklearn.neighbors import KernelDensity
import numpy as np

t = list(test['AvgTemperature’])
tt = [[1i] for 1 in t]
TT = np.array(tt)

X_plot = np.linspace(®, 98, 60@)[:, np.newaxis]

fig, ax = plt.subplots(figsize=(12,10))

bins = np.linspace(®, 90, 91)

ax.hist(t, bins=bins, density=True, alpha=0.3, label = 'Temperature Data Histogram')
ax.set_ylabel('Normalized Density')

ax.set _xlabel('Temperature (Fahrenheit)')

ax.set_title('Normalized Density of Temperature Throughout March in NYC (16 Years) - Test Data')

log _dens = kde.score_samples(X_plot)
ax.plot(x_plot[:, @], np.exp(log_dens), label = 'Gaussian Kernel, bw= 3.5")
ax.legend()

14



Normalized Density

Normalized Density of Temperature Throughout March in NYC (16 Years) - Test Data

0.05 1

0.04 1

0.03 1

0.02 1

0.00 -

40
Temperature (Fahrenheit)

15

~——— (Gaussian Kernel, bw= 3.5
% Temperature Data Histogram




