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1. (Triangular pdf) We are interested in fitting a model with a parametric
pdf equal to

fw(x) =

{
2x
w2 0 ≤ x ≤ w
0 otherwise

(1)

where the parameter w is nonnegative.

(a) The observed values are 1.25, 0.4, 1.5, 1, 1.2. What are the possible
values of the parameter w?

Since every value of x must be less than or equal to w if it is to produce some
value concerning the pdf, we want to make sure that w ≥ xi for each xi. Since
1.5 is that largest value given for x, we should ensure that w lies somewhere in
the domain 1.5 ≤ w

(b) Compute the likelihood function corresponding to these data and sketch
it.

We would like to generate a likelihood estimation for parameter w, so, assuming
independent samples,

L{x1,...,xn}(w) =

n∏
i=1

2xi
w2

=

(
2

w2

)n n∏
i=1

xi =
28.8

w10
(2)

Observe the plot below which shows the likelihood estimate as a function of w.
The red dotted line shows the constraint from part (a).
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(c) What is the maximum likelihood estimate of w?

Taking the derivative of this function and setting it equal to zero will not yield
the maximum of this function. Instead, we find the local maximum by observing
that L{x1,...,xn}(w) is greatest when w is smallest. Given the constraint from (a),
we know that w ≥ max({x1, ...xn}), so in this case,

wML = max({x1, ..., x5}) = 1.5 (3)

(d) If we observe 100 independent samples that are generated according
to the parametric model with a fixed value of w, do you think that
there is any chance that the ML estimate of w is correct? Justify your
answer intuitively.

The probability of our estimate of w being correct is approximately zero. This
is because w is essentially a random variable, hence, P (wML = w) = 0. Further-
more, we can imagine that even our estimation of w would change if we had one
observation that was greater than 1.5.
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(e) Let us assume w = 2. Generate a sample from a random variable fol-
lowing the model using a uniform sample from the interval [0, 1] equal
to 0.64.

First, we find the cdf from the given pdf, noting that w = 2,

Fw(x) =

∫ x

0

2x‘

4
dx‘ =

x2

4
(4)

Then, we can generate the inverse of this function,

F−1w (u) = 2
√
u (5)

So, if we want to generate a sample corresponding to 0.64, we have,

F−1w (0.64) = 2
√

0.64 = 1.6 (6)
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2. (Generating a uniform distribution) Assume that we can generate samples
from a continuous random variable ã with an invertible cdf Fã.

(a) What is the distribution of the random variable b̃ = Fã(ã)?

Let’s attempt to find the cdf of b̃. So, we have,

Fb̃(b) = P (b̃ ≤ b) = P (Fã(ã) ≤ b) = P (ã ≤ F−1ã (b))

= Fã(F−1ã (b)) = b
(7)

The derivative of the above result would yield 1, corresponding to the pdf. So
the distribution of b̃ is therefore uniform on the interval [0,1].

(b) Using the answer to the previous question and a result from the lecture
notes, propose a method to generate an exponential random variable
with parameter λ2 from the samples of another exponential random
variable with parameter λ1. The algorithm should simplify to a very
simple procedure.

Let X and Y be two random variables such that fX(x) = λ1e
−λ1x if x ≥ 0 and

fY (y) = λ2e
−λ2y if y ≥ 0. If we call U the uniform distribution between 0 and 1,

we then have, U = FY (Y ), and from lecture notes, we have, FY (Y ) = 1− e−λ1Y .
Furthermore, we also know from the notes that,

F−1X (U) =
1

λ2
log

(
1

1− U

)
(8)

We then replace U with FY (Y ), yielding,

F−1X (U) =
1

λ2
log

(
1

1− (1− e−λ1Y )

)
= − 1

λ2
log(e−λ1Y )

=
λ1
λ2
Y

(9)

This simple procedure can be used to generate an exponential random variable
with parameter λ2 from the samples of another exponential random variable with
parameter λ1.
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3. (Halloween) In Halloween Laura and her brother Mike arrive at a house
where they offer them a bowl with 2 chocolate bars. Mike grabs a random
number of chocolate bars; he grabs 0, 1, or 2 with the same probability.
Laura then grabs some chocolate bars out of the remaining ones; also with
uniform probability (there is the same probability that she grabs 0, 1, etc.).

(a) Model the number of bars grabbed by Mike and the number of bars
grabbed by Laura as random variables and compute their joint pmf.

The number of candy bars grabbed by Mike will be associated with random vari-
able m̃ and the number grabbed by Laura will be l̃. Now, if we just examine
Mike, we have,

pm̃(0) = pm̃(1) = pm̃(2) =
1

3
(10)

Then, we know by the chain rule for discrete random variables that,

pm̃,l̃(m, l) = pm̃(m)pl̃|m̃(l|m) (11)

It is trivial to calculate the conditional probabilities associated with Laura, after
Mike has chosen, because, again, they are uniform,

pl̃|m̃(0|0) = pl̃|m̃(1|0) = pl̃|m̃(2|0) =
1

3
(12)

pl̃|m̃(0|1) = pl̃|m̃(1|1) =
1

2
(13)

pl̃|m̃(0|2) = 1 (14)

So, the joint pmf is given by

pm̃,l̃(0, 0) = 1/9 pm̃,l̃(0, 1) = 1/9 pm̃,l̃(0, 2) = 1/9

pm̃,l̃(1, 0) = 1/6 pm̃,l̃(1, 1) = 1/6 pm̃,l̃(2, 0) = 1/3
(15)

With every other pm̃,l̃(m, l) = 0.
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(b) Compute the marginal pmf of the number of bars grabbed by Laura.

We compute the marginal pmf by summing over the various values of m̃ as follows

pl̃(0) = pm̃,l̃(0, 0) + pm̃,l̃(1, 0) + pm̃,l̃(2, 0) =
11

18
(16)

pl̃(1) = pm̃,l̃(0, 1) + pm̃,l̃(1, 1) =
5

18
(17)

pl̃(2) = pm̃,l̃(0, 2) =
1

9
(18)

This fully describes the marginal pmf, with all other outcomes having a proba-
bility of zero.

(c) What is the conditional pmf of the number of bars grabbed by Mike
if we know that Laura grabbed 1 bar?

We find,

pm̃|l̃(0|1) =
pm̃,l̃(0, 1)

pl̃(1)
=

2

5
(19)

pm̃|l̃(1|1) =
pm̃,l̃(1, 1)

pl̃(1)
=

3

5
(20)

This fully describes the conditional pmf, with all other outcomes having a prob-
ability of zero.
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4. (Air Quality) air quality.csv contains hourly sensor readings of concen-
trations of various chemicals found in the air outside an Italian city (see
the UCI repository for more details). The units are g

m3 . We are inter-
ested in a non-parametric estimation of the 2D probability distribution of
carbon monoxide (CO) and Non Metallic HydroCarbons (NMHC) using
multivariate Gaussian kernels.

(a) Plot the heatmap of the dataset. [Recommended: matplotlib or seaborn’s
heatmap functions will be useful here.]

The heatmap was constructed using the code below, with a grid of 40× 40 bins.
The colorbar on the side relates the color of each bin with the number of data
points that fall into each bin.
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(b) Plot the estimated probability density function applying a 2D Gaussian
Kernel i) using the first 50 data points and ii) using the whole dataset.
You can try multiple bandwidths, but be sure to include one plot using
bandwidth h=0.05. [Note: You may use seaborn’s kdeplot or sklearn’s
KernelDensity].

Below is the code used to generate the empirical pdfs of the first 50 data points,
as well as all of the data points (first and second plot, respectively). Both plots
use a bandwidth of h = 0.05. The colorbar on the side represents the likelihood
of being in a certain region of the plot.
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The strip of code above was used as a ”sanity check”. We calculated the area
of each small box used to plot the empirical pdf, and multiplied by the ”height”
or likelihood at each corresponding point. As expected, this volume calculation
yielded approximately one.

(c) Using the pdf estimated via KDE using the Gaussian kernel in part
(b), plot the marginal pdf of CO. Describe your approach.

The following code was used to produce the marginal pdf of CO. In order to do
so, we summed all of the values of the likelihood (or the height) of the pdf at
each value of CO. This amounts to summing the values of the likelihood along
the line at a value of CO, for each value of CO. We then normalized the values.
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(d) Using the pdf estimated via KDE using the Gaussian kernel in part
(b), plot the conditional pdf of NMHC given CO = 0.8. Describe your
approach.

The following code was used to produce the condition pdf of NMHC when CO =
0.8. This was achieved by finding all of the likelihood values along the line CO =
0.8 and normalizing by the total area enclosed under the curve (its best to imag-
ine the plot as 3D, with the color corresponding to the height at different regions).
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