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1. (Bayesian coin flip) Let us try out another prior for the Bayesian coin flip
problem in the notes. We now model the parameter of the Bernouilli as
being uniform between 1/2 and 1.

(a) Briefly justify the model and compute the probability that the result
of the coin flip is heads or tails under this model.

Working under the assumption that the uncle is cheating, and has somehow rigged
the coin to land on heads, it makes sense to assume that parameter θ would be
distributed such that θ ≥ 0.5 because θ is the probability of getting heads. So,
we have,

fθ̃(θ) = 2 for θ ∈ [0.5, 1] (1)

Furthermore, we model the result of the coin flip r̃ as a Bernoulli random variable
with parameter θ, such that r̃ = 0 implies tails and r̃ = 1 implies heads. Then,

pr̃(0) =

∫ ∞
−∞

fθ̃(u)pr̃|θ̃(0|u)du =

∫ 1

1/2

2(1− u)du = 0.25 (2)

pr̃(1) =

∫ ∞
−∞

fθ̃(u)pr̃|θ̃(1|u)du =

∫ 1

1/2

2u du = 0.75 (3)

(b) After the coin flip we update the distribution of the bias of the coin
(i.e. the parameter of the Bernoulli that represents the coin flip)
by conditioning it on the outcome. Compute the distribution if the
outcome is tails and if the outcome is heads. Sketch any distributions
you compute and explain why the drawing makes sense.

We need to calculate the posterior probability given this new information. So,
we first handle the scenario when the outcome is tails,
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fθ̃|r̃(θ|0) =
fθ̃(θ) pr̃|θ̃(0|θ)

pr̃(0)
=

2(1− θ)
0.25

= 8(1− θ) (4)

Where this is only valid for θ ∈ [0.5, 1]. Now, we handle the situation when the
outcome is heads,

fθ̃|r̃(θ|1) =
fθ̃(θ) pr̃|θ̃(1|θ)

pr̃(1)
=

2(θ)

0.75
=

8

3
θ (5)

Where this is only valid for θ ∈ [0.5, 1].

These drawings make sense because we expect the posterior distributions (given
in red) to shift from the prior distributions (given in blue) in the direction of the
new information we inputted. Getting a tails shifted the distribution of θ towards
0 as expected, and getting a heads further shifted the distribution towards 1 as
expected. A limitation of this model is that the resulting posteriors are always
in the same domain as the priors. Both posterior pdfs still have a total enclosed
area of one, as expected.

(c) You observe 100 coin flips and they all turn out to be tails (i.e. 0). Do
you think you should reconsider your prior? If so, why?

Yes, the prior should be changed, because the prior only acts over the range
[0.5, 1]. Even when we account for the 100 coin flips being tails, the calculated
posterior will still only yield a pdf that is valid between [0.5, 1] when in reality
the actual value of parameter θ would likely be less than 0.5.

2



2. (Halloween parade) The city of New York hires you to estimate whether it
will rain during the Halloween parade. Checking past data you determine
that the chance of rain is 20%. You model this using a random variable r̃
with pmf

pr̃(1) = 0.2 pr̃(0) = 0.8

where r̃ = 1 means that it rains and r̃ = 0 that it doesn’t. Your first idea
is to be lazy and just use the forecast of a certain website. Analyzing data
from previous forecasts, you model this with a random variable w̃ that sat-
isfies

p(w̃ = 1|r̃ = 1) = 0.8 p(w̃ = 0|r̃ = 0) = 0.75

(a) What is the probability that the website is wrong?

The probability of w̃ being correct is given by,

P (w̃ correct) = P (w̃ = 1|r̃ = 1)pr̃(1) + (w̃ = 0|r̃ = 0)pr̃(0) (6)

P (w̃ correct) = (0.8)(0.2) + (0.75)(0.8) = 0.76 (7)

So then its obvious that,

P (w̃ incorrect) = 1− P (w̃ correct) = 0.24 (8)

(b) Unsatisfied with the accuracy of the website, you look at the data used
for the forecast (they are available online). Surprisingly the relative
humidity of the air is not used, so you decide to incorporate it in your
prediction in the form of a random variable h̃. Is it more reasonable to
assume that h̃ and w̃ are independent, or that they are conditionally
independent given r̃? Explain why.

It makes more sense to consider h̃ and w̃ conditionally independent given r̃. This
translates to: if we already know its raining, does knowing that the website pre-
dicted the rain convey any more information about the humidity? Additionally,
would knowing the humidity convey any more information about the website’s
prediction? The answer to these questions should be assumed no, because the
website does not take into account humidity data. It is our hope that h̃ and w̃ are
actually dependent, since we hope that knowing information about the humidity
will be beneficial in calculating the website’s prediction.
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(c) You assume that h̃ and w̃ are conditionally independent given r̃. More
research establishes that conditioned on r̃ = 1, h̃ is uniformly dis-
tributed between 0.5 and 0.7, whereas conditioned on r̃ = 0, h̃ is uni-
formly distributed between 0.1 and 0.6. Compute the conditional pmf
of r̃ given w̃ and h̃. Use the distribution to determine whether you
would predict rain for any possible value of w̃ and h̃.

Given that w̃ and h̃ are conditionally independent given r̃, we are entitled to write,

pr̃|h̃,w̃(r|h,w) =
pr̃(r)pw̃|r̃(w|r)fh̃|r̃(h|r)∑r=1
r=0 pr̃(r)pw̃|r̃(w|r)fh̃|r̃(h|r)

(9)

From this, we can calculate the various components of pr̃|h̃,w̃ based off of the fact
that,

fh̃|r̃(h ∈ [0.1, 0.6]|r = 0) = 2 fh̃|r̃(h ∈ [0.5, 0.7]|r = 1) = 5 (10)

And, furthermore,

p(w̃ = 1|r̃ = 1) = 0.8 p(w̃ = 0|r̃ = 0) = 0.75 (11)

p(w̃ = 0|r̃ = 1) = 0.2 p(w̃ = 1|r̃ = 0) = 0.25 (12)

Then we have the following four cases,

pr̃|h̃,w̃(0|[0.1, 0.5], 0) =
pr̃(0)pw̃|r̃(0|0)fh̃|r̃([0.1, 0.5]|0)∑r=1
r=0 pr̃(r)pw̃|r̃(0|r)fh̃|r̃([0.1, 0.5]|r)

=
(0.8)(0.75)(2)

(0.8)(0.75)(2) + (0.2)(0.2)(0)
= 1

(13)

pr̃|h̃,w̃(1|[0.1, 0.5], 0) = 0 (14)

pr̃|h̃,w̃(0|[0.1, 0.5], 1) = 1 (15)
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pr̃|h̃,w̃(1|[0.1, 0.5], 1) = 0 (16)

pr̃|h̃,w̃(0|[0.5, 0.6], 0) =
pr̃(0)pw̃|r̃(0|0)fh̃|r̃([0.5, 0.6]|0)∑r=1
r=0 pr̃(r)pw̃|r̃(0|r)fh̃|r̃([0.5, 0.6]|r)

=
(0.8)(0.75)(2)

(0.8)(0.75)(2) + (0.2)(0.2)(5)
=

6

7

(17)

pr̃|h̃,w̃(1|[0.5, 0.6], 0) =
pr̃(1)pw̃|r̃(0|1)fh̃|r̃([0.5, 0.6]|1)∑r=1
r=0 pr̃(r)pw̃|r̃(0|r)fh̃|r̃([0.5, 0.6]|r)

=
(0.2)(0.2)(5)

(0.8)(0.75)(2) + (0.2)(0.2)(5)
=

1

7

(18)

pr̃|h̃,w̃(0|[0.5, 0.6], 1) =
pr̃(0)pw̃|r̃(1|0)fh̃|r̃([0.5, 0.6]|0)∑r=1
r=0 pr̃(r)pw̃|r̃(1|r)fh̃|r̃([0.5, 0.6]|r)

=
(0.8)(0.25)(2)

(0.8)(0.25)(2) + (0.2)(0.8)(5)
=

1

3

(19)

pr̃|h̃,w̃(1|[0.5, 0.6], 1) =
pr̃(1)pw̃|r̃(1|1)fh̃|r̃([0.5, 0.6]|1)∑r=1
r=0 pr̃(r)pw̃|r̃(1|r)fh̃|r̃([0.5, 0.6]|r)

=
(0.2)(0.8)(5)

(0.8)(0.25)(2) + (0.2)(0.8)(5)
=

2

3

(20)

pr̃|h̃,w̃(0|[0.6, 0.7], 0) =
pr̃(0)pw̃|r̃(0|0)fh̃|r̃([0.6, 0.7]|0)∑r=1
r=0 pr̃(r)pw̃|r̃(0|r)fh̃|r̃([0.6, 0.7]|r)

=
(0.8)(0.75)(0)

(0.8)(0.75)(0) + (0.2)(0.2)(5)
= 0

(21)

pr̃|h̃,w̃(1|[0.6, 0.7], 0) = 1 (22)

pr̃|h̃,w̃(0|[0.6, 0.7], 1) = 0 (23)

pr̃|h̃,w̃(1|[0.6, 0.7], 1) = 1 (24)
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This completely describes the conditional pmf pr̃|h̃,w̃(r|h,w). Any other combi-

nation of r|h,w would yield a probability of zero.

(d) What is the probability that you make a mistake?

We have complete certainty about the results unless h ∈ [0.5, 0.6]. This means
that any mistake would come from within this range. In fact, a mistake occurs
when r 6= w, so, we have,

P (mistake) = Pr̃,h̃,w̃(1, [0.5, 0.6], 0) + Pr̃,h̃,w̃(0, [0.5, 0.6], 1)

=

∫ 0.6

0.5

fh̃|r̃(h|1)pw̃|r̃(0|1)pr̃(1) + fh̃|r̃(h|0)pw̃|r̃(1|0)pr̃(0) dr

=

∫ 0.6

0.5

(5)(0.2)(0.2) + (2)(0.25)(0.8)dr

= 0.06

(25)
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3. (Markov chain) In this problem we consider the Markov chain correspond-
ing to the state diagram in Figure 1. Derive an expression for the state
vector of the Markov chain at an arbitrary time i assuming that we always
start at state A.

First, we must generate the transition matrix, which is as follows,

Tx̃ =

0 0.1 0
1 0 1
0 0.9 0

 (26)

Where, as an example, T1,2 = 0.1 is the probability of starting in state B and transi-
tioning to state A. Furthermore, we know that,

px̃[i] = T i
x̃ px̃[1] (27)

Where the initial state vector is trivial since we always start in state A. So, we have,

px̃[i] =

0 0.1 0
1 0 1
0 0.9 0

i 1
0
0

 (28)

With i ∈ {0, 1, 2, ...}. Now, when i is odd, we have,

px̃[i,odd] =

0 0.1 0
1 0 1
0 0.9 0

1
0
0

 =

0
1
0

 (29)
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And when i is even, we have,

px̃[i,even] =

0.1 0 0.1
0 1 0

0.9 0 0.9

1
0
0

 =

0.1
0

0.9

 (30)

So, the system oscillates between two different state vectors, always returning to state
B when i is odd, and oscillating between A and C when i is even.
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4. (Heart-disease detection) A hospital is interested in developing a system
for automatic heart-disease detection. Your task is to use the data in the
heart disease data.npz to detect heart disease in patients. You model heart
disease as a random variable h̃ that indicates whether the patient suffers
from heart disease or not:

h̃ =

{
0, if patient does not suffer from heart disease

1, if patient does suffer from heart disease
(31)

The available data contain the patient’s sex, the type of chest pain expe-
rienced by the patient and the cholesterol of the patient. We model these
quantities as the random variables s̃, c̃ and x̃ respectively, where

s̃ =

{
0, if patient is female

1, if patient is male
(32)

c̃ =


0, if the pain is typical angina

1, if the pain is atypical angina

2, for other types of chest pain

3, if there is no chest pain

(33)

and x̃ is a continuous random variable.

(a) Derive the MAP estimate of h̃ given s̃ and c̃ as a function of the pmf
of h̃(ph̃) and the conditional pmfs ps̃|h̃ and pc̃|h̃ . The MAP estimate
is defined as the mode of the posterior distribution. Assume that if
we know whether a patient is suffering from heart disease, the sex of
the patient and the type of chest pain experienced by the patient are
conditionally independent.

We know that by Bayes rule, we have,

ph̃|s̃,c̃(h|s, c) =
ph̃(h)ps̃,c̃|h̃(s, c|h)

ps̃,c̃(s, c)
(34)

Now, since the denominator has no dependence on h, we only need to worry
about the numerator. We want to find the value of h that maximizes the numer-
ator given values s and c. Furthermore, we can simplify the numerator through
conditional independence assumptions. The result becomes,
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MAPhs,c
=

{
0, if ph̃(1)ps̃|h̃(s|1)pc̃|h̃(c|1) < ph̃(0)ps̃|h̃(s|0)pc̃|h̃(c|0)

1, otherwise
(35)

(b) Complete the corresponding part of the script hw4q4.py to estimate
the necessary probability mass functions from the data. The training
data consists of 218 patients and is provided in the arrays data[”heart
disease”], data[”sex”] and data[”chest pain”]. Apply the MAP deci-
sion rule you derived in part (a) to predict whether a group of 50 other
patients, whose information is stored in the vectors data[”sex test”]
and data[”chest pain test”], suffer from heart disease. Calculate the
error rate (i.e. the proportion of predictions that are incorrect) by
comparing your results to data[”heart disease test”], which indicates
whether the patients suffer from heart disease or not.

Observe the following code, which creates the MAP estimation and tests it up
against the test data. The resulting error is shown.
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(c) Derive a MAP estimate of h̃ given s̃, c̃ and x̃ that only depends on the
pmf of h̃, ph̃, the conditional pmfs ps̃|h̃(s|h) and pc̃|h̃(c|h) and the con-

ditional pdf fx̃|h̃(x|h) , assuming that if we know whether a patient is
suffering from heart disease, the sex, type of chest pain and cholesterol
level of the patient are all independent.

Again, we have a similar expression for our map estimate, though we first apply
Bayes rule,
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ph̃|s̃,c̃,x̃(h|s, c, x) =
ph̃(h)ps̃,c̃,x̃|h̃(s, c, x|h)

ps̃,c̃,x̃(s, c, x)
(36)

Again, due to conditional independence, we can simplify the expression. This
time, we show the expression,

ph̃|s̃,c̃,x̃(h|s, c, x) =
ph̃(h)ps̃|h̃(s|h)pc̃|h̃(c|h)fx̃|h̃(x|h)

ps̃,c̃,x̃(s, c, x)
(37)

Then, as before, we ignore the denominator, which yields the MAP estimation
by finding the maximization of h given values for s, c, and x. The map rule then
becomes,

MAPhs,c,x
=

{
0, if ph̃(1)ps̃|h̃(s|1)pc̃|h̃(c|1)fx̃|h̃(x|1) < ph̃(0)ps̃|h̃(s|0)pc̃|h̃(c|0)fx̃|h̃(x|0)

1, otherwise

(38)

(d) You decide to model the cholesterol level of a patient conditioned on
whether he or she suffers from heart disease as a Gaussian random
variable. For both cases, complete the corresponding part of the script
hw4q4.py to obtain the ML estimates of the conditional distributions
from the data in cholesterol and compare the estimated pdf to the
histogram of the data.

Below is the result of the computed ML estimates with accompanying code and
resulting plots. The first plot is the histogram and pdf for cholesterol levels
conditioned on not having heart disease. The second plot is the histogram and
pdf for cholesterol levels conditioned on having heart disease.
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(e) Complete the corresponding part of the script hw4q4.py to apply your
MAP decision rule incorporating the cholesterol data and compute
the new error rate (using the cholesterol rates of the 50 new patients,
stored in data[”cholesterol test”]. Do you trust this result?

Below is the new MAP decision rule which incorporates the cholesterol data.
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I do not trust this result because it seems we have made some conditional inde-
pendence assumptions that might not necessarily be true. For example, x̃ and c̃
do not seem to be conditionally independent given h̃. I would expect that even
if we know a patient has heart disease, the severity of their chest pain would
provide more information about what we would estimate their cholesterol levels
to be. The reverse of this would also make logical sense. Given a patient with
heart disease, the severity of their chest pain could potentially be informed by
their cholesterol level. Given that we used conditional independence assumptions
in our derivation, the results do not appear to be trustworthy, even though our
error decreased.

(f) We have made some conditional independence assumptions that do
not necessarily hold. Another option would have been to estimate the
joint distribution of all the random variables from the data. Is this a
good idea?

This would not have been a good idea. The curse of dimensionality implies that
the number of parameters we would have to estimate would become exponential
if we were to attempt to calculate all of the joint pdfs. This process would be
cumbersome and very inefficient. Furthermore, given the amount of data that we
have, the joint pdfs would likely be based off of relatively few data points, since
our data set is so small.
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