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1. (Correlation coefficient.) For any 2 × 2 symmetric matrix

M =

[
a b
b c

]

such that b 6= 0, the eigenvalues of M equal

λ1 = a+c+d
2

λ2 = a+c−d
2

where d =
√
a2 + 4b2 + c2 − 2ac. The eigenvectors equal

u1 =

[
a−c+d

2b
1

]
, u2 =

[
a−c−d

2b
1

]

Note that the eigenvectors are not normalized for simplicity. Use this to
prove that for any zero-mean random variables ã and b̃ if ρã,b̃ = 1 then

P

(
b̃ =

σb
σa
ã

)
= 1 (1)

Let x̃ be a random vector composed of random variables ã and b̃. Then, we have that,

Σx̃ =

[
σ2
ã Cov(ã, b̃)

Cov(ã, b̃) σ2
b̃

]
(2)

Now since we have ρã,b̃ = 1, this implies that Cov(ã, b̃) = σãσb̃. The covariance matrix
of x̃ then becomes,
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Σx̃ =

[
σ2
ã σãσb̃

σãσb̃ σ2
b̃

]
(3)

We then can decompose the covariance matrix via spectral decomposition for sym-
metric matrices, yielding the result,

Σx̃ =

σãσb̃ −
σb̃
σã

1 1

[σ2
ã + σ2

b̃
0

0 0

]
σã
σb̃

1

−
σb̃
σã

1

 (4)

Where the central matrix is diagonal, and formed from eigenvalues λ1 and λ2. The left
matrix is composed of eigenvectors u1 and u2, and the right matrix is the transpose of
the left matrix. We want to prove a relationship involving the probability of ã and b̃.
Let’s define a new random variable as follows: ỹ = x1ã + x2b̃. Since ã and b̃ have an
expected value of 0, it follows readily that E[ỹ] = 0. Then, by Chebyshev’s inequality,
we see that,

P (|ỹ − E[ỹ]| ≥ c) ≤ V ar(ỹ)

c
(5)

P (|ỹ| ≥ c) ≤ V ar(ỹ)

c
(6)

If we have V ar(ỹ) = 0, then the probability of ỹ being greater than any positive con-
stant becomes zero. Therefore we find,

V ar(ỹ) = 0 =⇒ P (ỹ = 0) = 1 (7)

From our decomposition, we find that λ2 corresponds to a variance of 0, so x1 and x2
correspond to the values of the second eigenvector. Then we have,

x1 = −σb
σa
, x2 = 1 (8)

P (ỹ = 0) = P (−σb
σa
ã+ b̃) = P (b̃ =

σb
σa
ã) = 1 (9)

Thus, we have proven the desired relation, given that ρã,b̃ = 1.
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2. (Financial data) In this exercise you will use the code in the findata folder.
For the data loading code to work properly, make sure you have the pandas
Python package installed on your system.

Throughout, we will be using the data obtained by calling load data() in
findata tools.py. This will give you the names, and closing prices for a set
of 18 stocks over a period of 433 days ordered chronologically. For a fixed
stock (such as msft), let P1, ..., P433 denote its sequence of closing prices or-
dered in time. For that stock, define the daily returns series Ri := Pi+1−Pi
for i = 1, ..., 432. Throughout we think of the daily stock returns as features,
and each day (but the last) as a separate datapoint in IR18. That is, we
have 432 datapoints each having 18 features.

(a) Looking at the first two principal directions of the centered data, give
the two stocks with the largest coefficients (in absolute value) in each
direction. Give a hypothesis why these two stocks have the largest
coefficients, and confirm your hypothesis using the data. The file find-
ata tools.py has pretty print() functions that can help you output your
results. You are not required to include the principal directions in your
submission.

We can observe which two features (or stocks) have the largest coefficients in each
of the first two directions by constructing the returns matrix in then preforming
PCA on the zero-mean returns matrix. Observe the following code,
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From the first two eigenvectors, it becomes apparent that concerning eigenvector
one, Amazon has the largest component along it’s direction. Concerning eigen-
vector two, Google appears to have the largest eigenvector along it’s direction. If
we observe the daily return of each stock in a chart, it then becomes clear that
these two companies are those with the largest amount of variance.
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It is evident that these two stocks, Amazon and Google, represented by the
orange and red lines respectively, have the largest fluctuation (variance) which
corresponds to having large components within the first two principal directions.

(b) Standardize the centered data so that each stock (feature) has vari-
ance 1 and compute the first 2 principal directions. This is equivalent
to computing the principal directions of the correlation matrix (the
previous part used the covariance matrix). Using the information in
the comments of generate findata.py as a guide to the stocks, give
an English interpretation of the first 2 principal directions computed
here. You are not required to include the principal directions in your
submission.

We perform the same PCA, though this time we center the data and also scale the

5



data such that each feature vector has unit variance. The results are shown below,
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Here, we find that the two stocks with the largest coefficient have changed. In
regards to the first eigenvector, we have State Street’s SPDR S&P 500 ETF
(SPY), and in regards to the second eigenvector, we have, USO, an exchange
traded product that tracks the price of oil in the US. This result makes sense,
and can be interpreted as follows. When using the covariance matrix for PCA,
the stocks with the highest variance dominated our analysis. When using the
correlation matrix, the variances were all set to unit length, which allows PCA
to produce a better intuition relying more heavily on the relationship between
the features (stocks), as opposed to simply evaluating their variances. SPY and
USO both are most reliable in terms of representing the other features (the S&P
500 represents the top 500 companies, many of which are listed here, and oil is
generally a good barameter of market conditions), and therefore they dominate
the first two principle directions.

(c) Assume the stock returns each day are drawn independently from a
multivariate distribution x̃ where x̃[i] corresponds to the i−th stock.
Assume further that you hold a portfolio with 200 shares of each of
appl, amzn, msft, and goog, and 100 shares of each of the remaining
14 stocks in the dataset. Using the sample covariance matrix as an
estimator for the true covariance of x̃, approximate the standard de-
viation of your 1 day portfolio returns ỹ (this is a measure of the risk
of your portfolio). Here ỹ is given by

ỹ =
∑18
i=1 α[i]x̃[i]

where α[i] is the number of shares you hold of stock i.

The following section of code provides the standard deviation of our daily earn-
ings given the described holdings,

So the standard deviation of our daily return given our holdings is σỹ ≈ 6962.
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(d) Assume further that x̃ from the previous part has a multivariate Gaus-
sian distribution. Compute the probability of losing 1000 or more dol-
lars in a single day. That is, compute

Pr(ỹ ≤ −1000)

We will model the probability of losing more than 1000 dollars within a single
day by using a Gaussian random variable. We therefore must first calculate the
expected value of ỹ, shown in the code below,

Thus, µỹ ≈ 880. So, given, µỹ and σỹ, we can use a normal table to calculate
that Pr(ỹ ≤ −1000) ≈ 0.3936.
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3. (Streaks) In this problem we consider the problem of testing whether a
randomly generated sequence is truly random. A certain computer pro-
gram is supposed to generate Bernoulli iid sequences with parameter 0.5.
When you try it out, you are surprised that it contains long streaks of 1s.
In particular, you generate a sequence of length 200, which turns out to
contain a sequence of 8 ones in a row.

(a) Let s̃ be equal to the longest streak of 1s in an iid Bernoulli sequence
of length 5. Compute the pmf of s̃ exactly.

Since the sequence is only of length 5, there is only 25 = 32 possible outcomes.
The easiest method of generating the pmf is by analyzing the sample space, given
below,

00000 00001 00011 11100 11110 11111
00010 00101 11010 11101
00100 01001 10110 11011
01000 10001 01110 10111
10000 11000 00111 01111

10100 01011
10010 01101
01100 10011
00110 11001
01010 10101

(10)

So, now we simply note the longest streak within each possible entry of the sam-
ple space,

0 1 2 3 4 5
1 1 2 3
1 1 2 2
1 1 3 3
1 2 3 4

1 2
1 2
2 2
2 2
1 1

(11)

Then, counting the frequency of each chain length and dividing by 32 yields the
pmf,
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ps̃(0) = 1/32

ps̃(1) = 12/32

ps̃(2) = 11/32

ps̃(3) = 5/32

ps̃(4) = 2/32

ps̃(5) = 1/32

(12)

This is the requested pmf of s̃.

(b) Complete the script streaks.py to estimate the pmf of s̃ using Monte
Carlo simulation.Compare it to your answer in the previous question.
The script will also apply your code to estimate the pmf of s̃ when the
Bernoulli iid sequence has length 200. Include your code in the answer
as well as the figures generated by the script.

Below is my code and the resulting graphs from the completed script streaks.py.
We note that the results our computed pmf of s̃ match the Monte Carlo results
shown in the first graph.
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(c) Approximate the probability that the longest streak of ones in a Bernoulli
iid sequence of length 200 has length 8 or more. Is the sequence of 8
ones evidence that the program may not be generating truly random
sequences?

We find, from our empirical Monte Carlo simulation, that the probability of the
longest streak of ones in a Bernoulli iid sequence of length 200 has length 8 or
more is approximately 0.320 (as shown above). This relatively large sequence of
ones is not evidence that the program is failing to generate completely random
sequences. In fact, human perception is generally very biased in terms of evalu-
ating randomness. The ”gambler’s fallacy” is the belief that increasing runs of
one outcome (in this case, ones) makes the other outcome more likely. This is
obviously erroneous.
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4. (Radioactive sample) Consider the following experiment. We have a ra-
dioactive sample situated at unit distance from a line of sensors. Each time
a sensor detects a particle emitted from the sample we obtain a reading of
the position of the sensor in the x axis (we assume that we have so many
sensors that you can model this position as a continuous random variable).
We model the measurements as an i.i.d. sequence distributed as a random
variable m̃ = c+ x̃ where the pdf of x̃ is symmetric around the origin, that is
fx̃(x) = fx̃(−x) for all real numbers x. Your task is to estimate the position
of the sample c from these data.

(a) The file radioactive sample 1.txt contains a vector of measurements
m1,m2, .... Plot a moving average of the measurements 1

n

∑n
i=1mi for

n = 1, 2, 3, ... (and submit the plot). Use the plot to give an estimate
for the value of c. (Hint: What is the expected value of m̃?)

Under what assumptions on x̃ can you prove that the estimation method
you propose work?

Below is the plot of moving averages generated from the data in radioactive sample 1.txt,
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The final moving average, which is simply the average of all of the measurements
within radioactive sample 1.txt, is given as approximately 3.501. We also know
that,

m̃ = c+ x̃ (13)

E[m̃] = E[c+ x̃]

E[m̃] = E[c] + E[x̃]

E[m̃] = E[c] = c

(14)

Since the law of large numbers implies that the arithmetic mean of the measure-
ments converges to the expected value of m̃, we can take E[m̃] = 3.501. Therefore,

c = E[m̃] ≈ 3.501 (15)

In order to show that this estimation method is valid, it must be the case that
E[x̃] = 0. This is a reasonable assumption, given the problem statement, since
the pdf of x̃ is symmetric around x = 0. Therefore, we only make the assumption
that the expected value is well-defined.
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(b) The file radioactive sample 2.txt contains a vector of measurements
corresponding to a different radioactive sample. Does the estimation
method described above work in this case? Submit the plot of the new
moving average.

The estimation method does not work well here. The plot of the moving average
is as follows,

We can clearly see that the expected value of the measurements does not converge
given a large value of n.

(c) A colleague suggests that the angle α between the trajectory of the
particles emitted by the new sample and the vertical axis (illustrated
in Figure 1) might be well modeled by a random variable ã that is uni-
formly distributed between −π2 and π

2 . Compute the pdf and mean of
x̃ under this assumption. (Hint: remember the trigonometric function
tan and its inverse arctan.) Would such model explain your observa-
tions in (b)?

If we model α as uniform between −π2 and π
2 , we have the following pdf,

fã(a) =

{
1
π , if − π

2 ≤ a ≤
π
2

0, otherwise
(16)
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We also know that the relationship between ã and x̃ is given by,

x̃ = tan(ã) (17)

Then, we have that,

Fx̃(x) = P (x̃ ≤ x) = P (tan(ã) ≤ x) = P (ã ≤ arctan(x))

= Fã(arctan(x))
(18)

And the derivative of both sides yields,

fx̃(x) =
1

1 + x2
fã(arctan(x)) =

1

π(1 + x2)
(19)

This confirms the results we found in part (b) because the resulting pdf of x̃ is a
Cauchy random variable, which has an undefined expected value. This explains
why the expected value of the measurements in part (b) did not converge.

(d) The sample mean can be affected by extreme values and outliers,
whereas the sample median is more robust. The sample median con-
verges to the median of an iid sequence of random variables even when
the mean is not well defined. Use the sample median from radioac-
tive sample 2.txt to estimate c.

The result is simply that c = median(m̃). Observe the following plot, which
depicts the moving median,
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So, we have that,

c = median(m̃) ≈ 3.495 (20)
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