
DS-GA 1002 - Homework 7

Eric Niblock

October 25th, 2020

1. (Review/Concept Checks)

(a) Suppose X1, ..., X5
iid∼ N (µ, σ2). Compute the probability that all mea-

surements are within σ of µ:

P (|Xi − µ| < σ for i = 1, ..., 5)

If we just consider one random variable X ∼ N (µ, σ2), then we have that the
probability that X lies within one standard deviation of the mean as,

P (|X − µ| < σ) = 2

∫ µ+σ

µ

1

σ
√

2π
e−

1
2 ( x−µσ )2 = 2(0.3413) = 0.6826 (1)

And since all X1, ..., X5 are iid, we have that,

P (|X1 − µ| < σ ∩ ... ∩ |X5 − µ| < σ) = (0.6826)5 = 0.1483 (2)

(b) (Bias-Variance Decomposition) Suppose our data is drawn from a para-
metric model with parameter θ, and suppose that T is an estimator of θ.
One method for measuring the quality of T is the expected square loss:

L(θ) = E[(T − θ)2]

Prove that L(θ) can be expressed in terms of the bias of T and the
variance of T . [Hint: (T − θ)2 = ((T − E[T ]) + (E[T ]− θ))2].

It is clear that the bias of T and the variance of T can be expressed as,
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Bias(T, θ) = E[T ]− θ (3)

V ar(T ) = E[T 2]− E[T ]2 (4)

Then, we simply have,

L(θ) = E[(T − θ)2] = E[((T − E[T ]) + (E[T ]− θ))2]

= E[(T − E[T ])2 + 2(T − E[T ])(E[T ]− θ) + (E[T ]− θ)2]

= E[T 2 + E[T ]2] + E[2(−Tθ − E[T ]2 + E[T ]θ)] + E[(E[T ]− θ)2]

= E[T 2] + E[T ]2 − 2E[Tθ]− 2E[T ]2 + 2θE[T ] + (Bias(T, θ))2

= E[T 2]− E[T ]2 + (Bias(T, θ))2

= V ar(T ) +Bias2(T, θ)

(5)

So it is true that we can express L(θ) as a sum of the variance of T and the bias
of T squared.

(c) Let X be a random variable with corresponding PDF fX . Suppose
X has a symmetric distribution (i.e., fX(x) = fX(−x) for all x ∈ IRn).
Prove that

P (|X| ≤ a) = 2FX(a)− 1

for all a > 0 where FX is the CDF of X.

First, we begin by rewriting the above expression and simplifying,

P (−a ≤ X ≤ a) = 2FX(a)− 1 (6)

FX(a)− FX(−a) = 2FX(a)− 1 (7)

FX(a) + FX(−a) = 1 (8)

P (X ≤ a) + P (X ≤ −a) = 1 (9)

But since X is symmetrically distributed about the origin, it is clear that P (X ≤
−a) = P (X ≥ a). Then, we have,
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P (X ≤ a) + P (X ≥ a) = 1 (10)

Which is obviously true, since P (−∞ ≤ X ≤ ∞) = 1.

(d) Two scientists in different labs repeatedly perform the same experi-
ment (about 5 times each) to estimate the quantity of salt produced
by a particular chemical reaction. Scientist 1 obtains a 95% confi-
dence interval (in milligrams) [2, 3] whereas scientist 2 obtains a 95%
confidence interval (in milligrams) [4, 5]. True or false: this situation
is actually impossible since there cannot be a 95% chance the true
amount of salt is both less than 3mg and larger than 4mg. Please
include a short explanation of why you said true or false.

False. The confidence interval of 95% implies that if we repeated this experiment
many, many times, about 95% of the confidence intervals would contain the true
amount of salt within their range. Therefore, these conflicting confidence intervals
are able to coexist.

(e) You have conducted a survey of 100 randomly selected NYU students.
You ask each person surveyed for the number of students in the first
class they take each week. You average together their 100 answers to
get an estimate for the average class size at NYU (i.e., an estimate for
the sum of all class sizes divided by the total number of classes). Is
this estimate unbiased, biased too high, or biased too low? You can
assume that classes taken earlier in the week have roughly the same
size as all other classes. Please include a short justification for your
answer.

If the students are reporting the number of students in their first class each week
purely by observation (i.e. counting the number of students who are in class),
then this estimate is likely to be biased too low, since it is likely that not every
student is in attendance during some class period.

If the students are reporting the number of students in their first class via use of
the registrar, this is likely to be unbiased.

2. (Bias in Estimation) There have been many studies on the “hot-hand phe-
nomenon” in sports. In basketball, this occurs when a player has already
made several successful shots and is thought to be more likely to make
their next shot. Let X1, ..., Xn denote the n shots taken by a player during
a game in chronological order (Xi is 1 for success, and 0 for failure). Let S
denote the set of indices of the shots that occur immediately after 3 shots
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were made in a row:

S = {j : 3 < j ≤ n and Xj−3 = Xj−2 = Xj−1 = 1}

Assuming S 6= ∅ we compute the statistic T given by,

T =

∑
j∈S Xj

|S|
(11)

That is, T is the proportion of shots made in situations when the previous
three shots were made. Several studies have incorrectly assumed that if

X1, ..., Xn
iid∼ Bernoulli(p) for some p ∈ (0, 1) then T is an unbiased estimator of

p (i.e., they assume that if the shots are i.i.d. coin flips, then E[T |S 6= ∅] = p).

(a) Assuming X1, ..., Xn
iid∼ Bernoulli(1/2), compute E[T |S 6= ∅] for n = 6, ..., 10

to 3 digits of precision. You are expected to solve this computationally.
Make sure to include your code. [Hint: Use itertools.product in Python
to enumerate all possible outcomes for each n. The solutions for n = 4, 5
are 0.5, 0.417, respectively.]

We calculated the theoretical values of T for n ∈ {1, ..., 10} using the following
code. In the next portion, we display a graph of the results.
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We calculated values past the threshold of n = 10 to show that the trend of T is
not always decreasing.

(b) Estimate the answer to the previous part for n = 40 using 10,000 sim-
ulations. Report both your estimated answer, and an approximate
normal-based 95.4% confidence interval for the true answer. Remem-
ber to also include your code. [Hint: To test your code, simulate for
n = 4, ..., 10 and compare your answers with the previous part.]

We approximated the value of T for n = 40 using 10,000 simulations. We pro-
duced the results as follows,
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From these results, we can construct a 95.4% confidence interval for T as follows,
using the sample mean and sample standard deviation, which we refer to as X̄
and σX̄ , then,

[X̄ − 2σX̄ , X̄ + 2σX̄ ] = [0.3994, 0.4096] (12)

Furthermore, as a reassurance, we plotted the empirical and theoretical results
for n ∈ {1, ..., 40}, though we used 100, 000 trials instead. The results are shown
in the following plot. It is clear that the emipirical and theoretical results match
up nicely.

6



3. (Modeling and Confidence Intervals) Suppose an undergraduate course has
300 students. 40 students are selected at random (without replacement)
and asked through email whether they are interested in tutoring (responses
are “yes” or “no”). Our goal is to use the data from the 40 students to
estimate the proportion of students in the course that want tutoring.

(a) Propose a statistical model for the data.

We choose to model a response i as Xi, which is either 1 if the respondent says

yes, and 0 if the respondent says no. Then X1, ..., X40
iid∼ Bernoulli(θ), and we

have an estimator for the total proportion of students who want tutoring,

T =
1

n

n∑
i=1

Xi (13)
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(b) Show that the sample mean is an unbiased estimator for the propor-
tion θ of the 300 students that are interested in a tutor.

T as defined above is the sample mean, and to show that T is an unbiased esti-
mator of θ we must show that E[T ] = θ,

E[T ] =
1

n
E

[
n∑
i=1

Xi

]
=

1

n

n∑
i=1

E[Xi] =
1

n

n∑
i=1

θ = θ (14)

(c) Compute the standard error of the sample mean in terms of θ. [Hint:
Compute the covariance between two responses.]

If we sample without replacement, we cannot make the assumption of indepen-
dence and we have X1, ..., X40∼Bernoulli(θ). Then,

V ar(T ) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2
V ar

(
n∑
i=1

Xi

)

=
1

n2

 n∑
i=1

V ar(Xi) + 2

n,n∑
i6=j

Cov(Xi, Xj)


=

1

n2

 n∑
i=1

θ(1− θ) + 2

n,n∑
i 6=j

Cov(Xi, Xj)


(15)

Now we need to evaluate the covariance term,

Cov(Xi, Xj) = E[XiXj ]− E[Xi]E[Xj ] (16)

E[XiXj ] = θ(θ − 1

300
) (17)

E[Xi]E[Xj ] = θ2 (18)

Cov(Xi, Xj) = − θ

300
(19)
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Back to the variance equation, we get,

V ar(T ) =
θ(1− θ)

n
− 2

n2

(n2 − n)θ

300
(20)

(d) How does your answer to the previous part change if you sample with
replacement?

If we sample with replacement, the problem actually becomes much easier. We

can consider X1, ..., X40
iid∼ Bernoulli(θ), and thus,

V ar(T ) = V ar

(
1

n

n∑
i=1

Xi

)
=

1

n2

n∑
i=1

V ar(Xi)

=
1

n2

n∑
i=1

θ(1− θ) =
θ(1− θ)

n

(21)

So then it follows readily that the standard error is given by,

σθ =

√
θ(1− θ)

n
(22)

(e) Give an approximate normal-based 95% confidence interval for θ as-
suming 10 students said yes, 30 said no, and the samples were taken
with replacement. Your answer should not depend on θ.

We have that T is our estimator of θ, and the standard error of θ, so,

T =
10

40
= 0.25 (23)

σθ =

√
0.25(0.75)

40
= 0.0685 (24)

The approximately 95% confidence interval becomes,
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[T − 1.96σθ, T + 1.96σθ] = [0..1157, 0.3843] (25)

(f) Suppose only 30 of the 40 students replied to your email, and we pro-
ceed using the 30 replies. Explain how this could effect our estimate
(other than the fact that our dataset is smaller). [Hint: Non-response
bias.]

We need to consider the fact that those who are uninterested in tutoring are
probably more likely not to respond to the email, because they have no need of
the service, and thus no need to participate in the survey. This is classic case
of non-response bias: the individuals not responding have positions that differ
greatly from those that do respond.

4. (Confidence Intervals and Models) You have been given a file rain.txt con-
taining rainfall data from 52 clouds. Half of the 52 clouds were chosen at
random, and treated with a chemical to increase precipitation. We assume
all of the clouds are independent. To model the effect of the treatment, we
consider two options:

• (Additive Treatment Effect) Let X represent the pre-treatment rain-
fall of a cloud, and X ‘ the post-treatment rainfall. Then

X ‘ = X + η

for some η ∈ IR.

• (Multiplicative Treatment Effect) Let X represent the pre-treatment
rainfall of a cloud, and X ‘ the post-treatment rainfall. Then

X ‘ = eδX

for some δ ∈ IR.

(a) Construct a box plot showing the untreated and treated rainfall data
(2 columns in 1 plot). Then construct a second boxplot for the loga-
rithms of the untreated and treated rainfall data.

Below are the boxplots of the rainfall and log rainfall concerning the treated and
untreated clouds:
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(b) Assuming an additive treatment model, give an estimate, and an ap-
proximate normal-based 95% confidence interval for η. [Hint: What is
the variance of your estimator?]

Since we have that η = X ‘ − X, it follows that a reasonable estimator is given
by,

T =
1

n

n∑
i=1

X ‘
i −Xi (26)

Where index i serves to iterate us through treated and untreated clouds, taking
pairwise differences. T is an unbiased estimator of η since
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E[T ] = E

[
1

n

n∑
i=1

X ‘
i −Xi

]
= E[X ‘ −X] = E[η] = η (27)

And furthermore,

V ar(T ) = V ar

(
1

n

n∑
i=1

X ‘
i −Xi

)
=

1

n2

n∑
i=1

V ar(X ‘
i −Xi)

=
V ar(X ‘) + V ar(X)

n

(28)

Then, we have that,

T = 277.396 V ar(T ) = 19270 (29)

So in order to construct our confidence interval, we first use the fact that σT =√
V ar(T ) = 138.820, and so our approximately 95% confidence interval for η is

given by,

[T − 1.96σT , T + 1.96σT ] = [5.309, 549.483] (30)

(c) Assuming a multiplicative treatment model, give an estimate, and an
approximate normal-based 95% confidence interval for δ. [Hint: Ex-
press log(X ‘) in terms of log(X).]

We can rewrite the multiplicative treatment model as δ = ln(X ‘)− ln(X). Then,
we consider the estimator,

T =
1

n

n∑
i=1

ln(X ‘
i)− ln(Xi) (31)

Where index i serves to iterate us through treated and untreated clouds, taking
pairwise differences. Then we simply calculate the sample standard deviations of
these natural log differences, yielding,
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T = 1.144 σT̄ = 0.0708 (32)

Then we have an approximately 95% normal based confidence interval which re-
sults, and is given by,

[T − 1.96σT̄ , T + 1.96σT̄ ] = [1.0024, 1.2856] (33)

(d) Give an estimate, and an approximate normal-based 95% confidence
interval for the mean rainfall of the untreated clouds. Explain why
this should be shorter than our interval for η.

We can easily find the sample mean and sample standard deviations of the rain-
fall of the untreated clouds, which results in,

X̄ = 164.588 (34)

σX̄ =
s√
n

=
278.426√

26
= 54.604 (35)

So the approximate normal-based 95% confidence interval is given by,

[X̄ − 1.96σX̄ , X̄ + 1.96σX̄ ] = [57.565, 271.612] (36)

It makes sense that the confidence interval for the mean rainfall of the untreated
clouds is shorter than that of η because the variance of η is much greater, as it
takes into account the variance of the both the treated and untreated clouds.
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