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November 3rd, 2020

1. (a) Suppose X1, ..., Xn
iid∼ F , where F has density

f(x;α) =

{
αxα−1, for x ∈ [0, 1]

0, otherwise
(1)

where α > 0 is unknown. Determine the MLE for α.

We find that the joint distribution for x1, ..., xn is given by,

f(x1, ..., xn;α) =

n∏
i=1

αxα−1
i (2)

Then, the log-likelihood function is given by,

L(α;x1, ..., xn) =

n∑
i=1

ln(α) + (α− 1)ln(xi)

= n · lnα+ (α− 1)
n∑
i=1

ln(xi)

(3)

Then, taking the derivative yields,

∂L
∂α

(α;x1, ..., xn) =
n

α
+

n∑
i=1

ln(xi) (4)

And setting the derivative equal to zero, we find the maximum value for α̂,
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α̂ = − n∑n
i=1 ln(xi)

= − 1

ln(X)
(5)

Thus this is the result for the MLE estimate of α.

(b) Let X1, ..., Xn
iid∼ N (µ, σ2). Let τ be the 0.95 percentile, i.e., P (X < τ) =

0.95. Find the MLE for τ . [Hint: Write an expression for τ in terms
of µ, σ, and φ and apply equivariance.]

First, we have the following relationship,

P (X < τ) = 0.95 = P (
X − µ
σ

<
τ − µ
σ

) (6)

And furthermore, we have that on a standard normal distribution (N (0, 1)), the
0.95 percentile is given by τ0 = 1.64485. Therefore, we have that,

τ0 =
τ − µ
σ

=⇒ τ = 1.64485σ + µ (7)

And, furthermore,

τ̂ = 1.64485σ̂ + µ̂ (8)

Now, the MLE estimation of µ and σ2 for X1, ..., Xn
iid∼ N (µ, σ2) begins with the

joint distribution of X1, ..., Xn:

f(x1, ..., xn;µ, σ) =

n∏
i=1

1

σ
√

2π
e−

1
2 (
xi−µ
σ )2 (9)

Then, the log-likelihood equation becomes,

L(µ, σ;x1, ..., xn) =

n∑
i=1

ln

(
1

σ
√

2π

)
− 1

2

(
xi − µ
σ

)2

= n · ln
(

1

σ
√

2π

)
− 1

2σ2

n∑
i=1

(xi − µ)2
(10)
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Then taking the derivative,

∂L
∂µ

(µ, σ;x1, ..., xn) = − 1

2σ2

n∑
i=1

−2(xi − µ) (11)

Setting this derivative equal to zero yields,

µ̂ =
1

n

n∑
i=1

xi (12)

Similarly, taking the derivative with respect to σ and using the maximum likeli-
hood estimate µ̂ yields,

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (13)

Then, using these estimates, it is clear that our estimate for τ becomes,

τ̂ = 1.64485

√√√√ n∑
i=1

(xi − µ̂)2

n
+

1

n

n∑
i=1

xi (14)
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2. A training program claims their teaching methods will improve their stu-
dents’ quantitative GRE scores. They have provided an anonymized list
of quantitative GRE scores from all 75 students that completed their most
recent course and also attend the nearby university. They were also able
to obtain a sample (roughly random) of 100 quantitative GRE scores from
students at the nearby university that did not enroll in the training pro-
gram. The data on these 175 students is found in gre data.csv. They claim
that this data provides strong evidence that their program works. We
model the training program scores as independent draws from N (µT , σ

2)
and the remaining scores as independent draws from N (µU , σ

2).

(a) Compute an unbiased estimate of µT − µU that uses all of the data.

We have the following estimator, S, for µT − µU ,

S =
1

n

n∑
i=1

xTi −
1

m

m∑
j=1

xUj (15)

Where {xT1
, ..., xTn} represent the n measurements of students in the training

program and {xU1
, ..., xUm} represent the m measurements of students not in the

training program. We know this estimator to be unbiased since

E[S] =
1

n
E

[
n∑
i=1

xTi

]
− 1

m
E

 m∑
j=1

xUj


=

1

n

n∑
i=1

E[xTi ]−
1

m

m∑
j=1

E[xUj ]

=
1

n

n∑
i=1

µT −
1

m

m∑
j=1

µU

= µT − µU

(16)

Since E[S] = µT − µU , we know that S is unbiased. Furthermore, we find that,

S = 3.197 (17)
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(b) Before you reveal your results, your colleague says “your estimate is
unbiased, so if it is positive, that means we have strong evidence to
conclude the true µT is larger than the true µU .” Assuming the model
is correct, give a short explanation why more is needed conclude this.

We have only calculated one value for S, though S itself lies in a distribution
with some standard error. If we estimate the standard error, and construct a
confidence interval, we could better approach the colleague’s statement. However,
we ideally need to construct a plethora of confidence intervals in order to gain
any real information about the true means.

(c) Compute the standard error and a 95% confidence interval for µT −µU
using your estimator.

We will need to know the variance of our estimator, which we find as,

V ar(S) = V ar

(
1

n

n∑
i=1

xTi

)
+ V ar

 1

m

m∑
j=1

xUj


=

1

n2

n∑
i=1

V ar(xTi) +
1

m2
V ar(xUj )

=
nV ar(xTi)

n2
+
mV ar(xUj )

m2

=
V ar(xTi)

n
+
V ar(xUj )

m

(18)

And furthermore, by use of the sample variance, we find that

σS =

√
V ar(xTi)

n
+
V ar(xUj )

m
(19)

So, the 95% confidence interval becomes,

[S − 1.96σS , S + 1.96σS ] = [0.221, 6.173] (20)

(d) Generate 5000 bootstrap estimates of µT − µU .

5



i. Plot a histogram of your bootstrap estimates. [Hint: Use bins =
’auto’ to autoselect the number of bins.]

ii. Use your bootstrap estimates to compute a 95% confidence interval
for your estimate of µT − µU .

Below, we plotted the histogram of our estimates of µT − µU . We also used the
following code to produce the confidence interval,

So, the resulting 95% confidence interval for µT − µU becomes,
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[0.350, 5.967] (21)

(e) Assuming the model is correct, explain why this data is not conclusive
evidence that the training program raises student grades as claimed.
[Hint: The confidence interval suggests that µT really is larger than
µU , so that isn’t the reason.]

We can never obtain conclusive evidence about the true means (or their differ-
ence), unless we somehow have access to the population data, and can calculate
them directly.
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3. Consider the following data model:

X1, ..., X15
iid∼ N (µ, σ2)

In this problem we will use simulation to analyze and better understand
the joint distribution of µ̂ and σ̂, the MLEs for µ and σ, respectively.

Simulate 1000 datasets drawn from the model using the values µ = 1 and
σ2 = 4.

(a) Using each simulated dataset, compute the MLEs for µ and σ. Give a
scatter plot of your 1000 MLEs (each pair of MLEs is a single point
on your plot).

We follow the previously outlined MLEs for normal distributions given by,

µ̂ =
1

n

n∑
i=1

xi (22)

σ̂2 =
1

n

n∑
i=1

(xi − µ̂)2 (23)

Where we have instead used the sample standard deviation. Observe the follow-
ing plot of MLEs,
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(b) Plot two histograms of your 1000 MLEs (one for µ and one for σ, with
bins =’auto’).

Here we plot two histograms concerning the MLE sample means and standard
deviations,
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(c) Using the 1000 MLE pairs you computed, estimate the covariance
matrix for the joint distribution of µ̂ and σ̂. [Hint: np.cov.]

The code below not only provides the covariance matrix, but also shows the data
generating procedure used throughout this question. Furthermore, it shows the
output of standard errors for the following question,

(d) Estimate the standard errors of µ̂ and σ̂ using your answer to the
previous part.

The diagonals of the covariance matrix are associated with the variance of µ̂ and
σ̂. We then simply find the standard error by taking the square root. We find,

σµ̂ = 0.524 (24)
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σσ̂ = 0.381 (25)

(e) Using (only in this part) that our data is drawn from a distribution
with variance 4, what is the true standard error of µ̂? [Hint: Check
that this value is close to your answer to the previous part (within
0.05 let’s say).]

Given that we know the population variance, it is clear that,

σµ̂ =
σ√
n

=
2√
15

= 0.5164 (26)

(f) Using a normal-approximation and the standard errors we estimated
above (using our 1000 MLEs), what do you expect the widths of the
95% confidence intervals for µ and σ to be? (If your interval is [a, b]
the width is b− a.)

Since approximately 95% confidence intervals are given by,

[µ̂− 1.96σµ̂, µ̂+ 1.96σµ̂] (27)

[σ̂ − 1.96σσ̂, σ̂ + 1.96σσ̂] (28)

We know that the width of these intervals is given by,

width(µ̂) = 3.92σµ̂ = 2.095 (29)

width(σ̂) = 3.92σσ̂ = 1.523 (30)

(g) Use the empirical quantiles of the values in your 1000 pairs to compute
95% confidence intervals for µ and σ. [Hint: Check that the widths
here line up with those computed in the preceding part.]

The following code produces the empirical quantiles, and also shows their width,
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The resulting width of these intervals is very similar to those calculated previ-
ously, which serves as a good check.
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4. Your firm manufactures devices that can overheat when used in hot tem-
peratures. In overheat.csv you are given the data from an experiment
conducted by your company. A device is left in a temperature controlled
room for 10 minutes, and then several tests are run. The dataset contains
the temperatures ti (in Fahrenheit), and whether a failure occured Yi (1
for failure, 0 for success). Consider the following model for failure:

Yi
iid∼ Bernoulli

(
ea+bti

1+ea+bti

)
where a, b ∈ IR are unknown.

(a) Compute the log-likelihood function for the parameters a, b. Your re-
sult should be given in terms of Yi and ti (i.e., do not plug in the
values from the file). Simplify your expression so that all logarithms
that appear have the form

log(1 + ea+bti)

The log-likelihood function for Bernoulli random variables Y1, ..., Yn is given by,

L(p; y1, ...yn) =

n∑
i=1

ln(pyi) + ln((1− p)1−yi)

=

n∑
i=1

yiln

(
ea+bti

1 + ea+bti

)
+ (1− yi)ln

(
1− ea+bti

1 + ea+bti

)

=

n∑
i=1

yi
(
ln(ea+bti)− ln(1 + ea+bti)

)
+ (1− yi)ln

(
1

1 + ea+bti

)

=

n∑
i=1

yi(a+ bti)− log(1 + ea+bti)

(31)

(b) Using a numerical optimization library, compute the MLEs â, b̂ for
a, b using the data in the file. [Hint: Use np.logaddexp to evaluate
log(1+ea+bti), and use scipy.optimize.minimize with method = ’Nelder-
Mead’ and x0 = [0, 0] along with the appropriate function to optimize.]

The following code was used to approximate â and b̂ by numerical minimization
methods. The results are given as a print out at the end of the code.
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(c) Plot the data as a scatter plot with temperature on the x-axis and
whether failure occured on the y-axis. In the same figure, include a
plot of the function

g(x) = eâ+b̂x

1+eâ+b̂x

Here we provide the code used to generate a plot of g(x) as well as the scatter
plot of the failure (binary) as a function of temperature.
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(d) We are going to investigate the sampling distribution of our MLEs
using the bootstrap.

Generate 200 new datasets of size 455 by sampling 455 (ti, Yi) pairs
with replacement from the given data. [Hint: You can sample in-
dices from range(455) and then subselect a numpy array or use pan-
das.DataFrame.sample with frac=1 and replace=True.]

i. For each of the 200 generated datasets, estimate new MLEs for a, b.
Create a scatter plot with all of your 200 estimates (one point for
each pair of values).

ii. Use your 200 MLEs to compute a 95% bootstrap confidence inter-
val for a.

iii. Use your 200 MLEs to compute a 95% bootstrap confidence inter-
val for b.

Below is the code used to generate the bootstrap and return the resulting confi-
dence intervals for a and b.
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