
DS-GA 1003 - Homework 1

Eric Niblock

February 3rd, 2021

For the first part of this assignment we will consider a synthetic prediction prob-
lem to develop our intuition about the error decomposition. Consider the random
variables x ∈ X = [0, 1] distributed uniformly (x ∼ Unif([0, 1])) and y ∈ Y = R defined
as a polynomial of degree 2 of x: there exists (a0, a1, a2) ∈ R3 such that the values of
x and y are linked as y = g(x) = a0 + a1x+ a2x

2. Note that this relation fixes the joint
distribution PX×Y .

From the knowledge of a sample {xi, yi}Ni=1, we would like to predict the relation
between x and y, that is find a function f to make predictions ŷ = f(x). We note
Hd, the set of polynomial functions on R of degree d:

Hd =
{
f : x→ b0 + b1x+ · · ·+ bdx

d; bk ∈ R∀k ∈ {0, · · · d}
}

We will consider the hypothesis classes Hd varying d. We will minimize the
squared loss `(ŷ, y) = 1

2 (ŷ − y)2 to solve the regression problem.

1. Recall the definition of the expected risk R(f) of a predictor f . While this can-
not be computed in general note that here we defined PX×Y . Which function
f∗ is an obvious Bayes predictor? Make sure to explain why the risk R(f∗) is
minimum at f∗.

Here the obvious Bayes predictor is simply f∗ = g(x) = a0 + a1x+ a2x
2. This is because

R(f∗) is minimized, as shown,

R(f∗) = E[`(f∗(x), g(x))] = E[`(g(x), g(x))] = E

[
1

2
(g(x)− g(x))

]
= 0 (1)

2. Using H2 as your hypothesis class, which function f∗H2
is a risk minimizer in H2?

Recall the definition of the approximation error. What is the approximation
error achieved by f∗H2

?

It is clear that f∗H2
(x) = a0 + a1x + a2x

2 is a risk minimizer in H2. The approximation
error is then given by,

1

R(f∗H2
)−R(f∗) = R(f∗H2

) = E[`(f∗H2
(x), g(x))] = E

[
1

2
f∗H2

(x)− g(x))

]
= E

[
1

2

(
(b0 − a0) + (b1 − a1)x+ (b2 − a2)x2

)]
=

1

2
(b0 − a0) + (b1 − a1)E[x] + (b2 − a2)E[x2]

=
1

2
(b0 − a0) +

1

2
(b1 − a1) +

1

4
(b2 − a2)

(2)

We are free to choose bi = ai. Doing so minimizes the risk, and yields,

R(f∗H2
)−R(f∗) = R(f∗H2

) = 0 (3)

3. Considering now Hd, with d > 2. Justify an inequality between R(f∗H2
) and

R(f∗Hd
). Which function f∗Hd

is a risk minimizer in Hd? What is the approxima-
tion error achieved by f∗Hd

?

From the above result, we have the value for R(f∗H2
) = 0. For R(f∗Hd

) for all d, we can
simply make f∗Hd

= f∗H2
by setting all bi = 0 for i ∈ {3, ..., d}. This function is therefore

f∗Hd
, the risk minimizer of Hd. Then it is obvious that,

R(f∗H2
) = R(f∗Hd

) (4)

Our approximation error of f∗Hd
is therefore given by,

R(f∗Hd
)−R(f∗) = 0 (5)

4. For this question we assume a0 = 0. Considering H = {f : x→ b1x; b1 ∈ R}, which
function f∗H is a risk minimizer in H? What is the approximation error achieved
by f∗H? In particular what is the approximation error achieved if furthermore
a2 = 0 in the definition of true underlying relation g(x) above?

We note that f∗H is such that,

2

f∗H ∈ arg min
f∈H

E[`(f(x), y)] (6)

So, we begin by calculating the expectation,

E[`(f(x), y)] = E[
1

2
(a1x+ a2x

2 − b1x)2]

=
1

2
(a1 − b1)2E[x2] + a2(a1 − b1)E[x3] +

1

2
a22E[x4]

=
1

8
(a1 − b1)2 +

1

8
a2(a1 − b1) +

1

32
a22

(7)

Now we can minimize this function with respect to b1 by taking a derivative,

∂E[`(f(x), y)]

∂b1
= b1 − a1 −

a2
2

= 0 (8)

b1 = a1 +
a2
2

(9)

So, we have the risk minimizer as being,

f∗H(x) = (a1 +
a2
2

)x (10)

In practice, PX×Y is usually unknown and we use the empirical risk minimizer
(ERM). We will reformulate the problem as a d-dimensional linear regression prob-
lem. First note that functions in Hd are parametrized by a vector b = [b0, b1, · · · bd]>,
we will use the notation fb. Similarly we will note a ∈ R3 the vector parametriz-
ing g(x) = fa(x). We will also gather data points from the training sample in the
following matrix and vector:

X =


1 x1 · · · xd1
1 x2 · · · xd2
...

...
...

...
1 xN · · · xN

 , y = [y0, y1, · · · , yN]>. (11)

These notations allow us to take advantage of the very effective linear algebra for-
malism. X is called the design matrix.

3

5. Show that the empirical risk minimizer (ERM) b̂ is given by the following min-

imization b̂ = arg min
b
‖Xb− y‖22.

From the definition of an empirical risk minimizer, f̂n, we have that,

f̂n ∈ arg min
f∈F

1

n

n∑
i=1

`(f(xi), yi) =⇒ f̂n ∈ arg min
f∈F

n∑
i=1

(f(xi)− yi)2 (12)

Now, it is clear that we can write this sum of losses in a more compact notation,

f(x1)− y1
...

f(xn)− yn

 =


1 x1 · · · xd1
1 x2 · · · xd2
...

...
...

...
1 xN · · · xN


b0...
bd

−
y1...
yn

 = Xb− y (13)

Where the vector b contains all the information regarding function f . Then we see that,

n∑
i=1

(f(xi)− yi)2 = (f(x1)− y1)2 + ...+ (f(xn)− yn)2

=

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
f(x1)− y1

...
f(xn)− yn


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣ = ‖Xb− y‖22

(14)

So the empirical risk minimizer (ERM) b̂ is given by the following minimization b̂ =
arg min

b
‖Xb− y‖22.

6. If N > d and X is full rank, show that b̂ = (X>X)−1X>y. (Hint: you should
take the gradients of the loss above with respect to b). Why do we need to use
the conditions N > d and X full rank?

First, we take the gradient of the loss function with respect to b, yielding,

∂

∂b

(
‖Xb− y‖22

)
=

∂

∂b

(
(Xb− y)T (Xb− y)

)
= 2XT (Xb− y) (15)

4

Setting this equal to zero provides us with b̂,

2XT (Xb̂− y) = 0 (16)

XTXb̂ = XT y (17)

b̂ = (XTX)−1XT y (18)

Which is the desired result. Obviously, X must be full rank because otherwise XTX would
not be full rank, and therefore, non-invertible. This would prevent us from solving for b̂.
Furthermore, since d+ 1 represents the number of columns and N represents the number
of rows, if N ≤ d, the matrix is wide, and there exists linear dependency. This would imply
X is not full rank. As before, we would be unable to solve for b̂.

Open the source code file hw1 code source.py from the .zip folder. Using the
function get a get a value for a, and draw a sample x train, y train of size N = 10
and a sample x test, y test of size Ntest = 1000 using the function draw sample.

We used the following code to produce the requested a value and accompanying samples,

a = get_a(2)

x_train,y_train = draw_sample(2, a, 10)

x_test,y_test = draw_sample(2,a, 1000)

7. Write a function called least square estimator taking as input a design matrix
X ∈ RN×(d+1) and the corresponding vector y ∈ RN returning b̂ ∈ R(d+1). Your
function should handle any value of N and d, and in particular return an error
if N ≤ d. (Drawing x at random from the uniform distribution makes it almost
certain that any design matrix X with d ≥ 1 we generate is full rank).

Here, we have the function least square estimator:

def least_square_estimator(X,y):

if X.shape[0] > X.shape[1]-1:

b = np.linalg.inv(X.T @ X) @ X.T @ y

return(b)

else:

print('Error: N <= d')

5

8. Recall the definition of the empirical risk R̂(f̂) on a sample {xi, yi}Ni=1 for a pre-

diction function f̂ . Write a function empirical risk to compute the empirical
risk of fb taking as input a design matrix X ∈ RN×(d+1), a vector y ∈ RN and
the vector b ∈ R(d+1) parametrizing the predictor.

Here, we have the function empirical risk:

def empirical_risk(X,y,b):

risk = (1/X.shape[0])*(np.linalg.norm(X@b-y))**2

return(risk)

9. Use your code to estimate b̂ from x train, y train using d = 5. Compare b̂ and
a. Make a single plot (Plot 1) of the plane (x, y) displaying the points in the
training set, values of the true underlying function g(x) in [0, 1] and values of
the estimated function fb̂(x) in [0, 1]. Make sure to include a legend to your plot.

Using d = 5, we find the following values of a and b̂,

d = 5

X_train = get_design_mat(x_train, d)

b = least_square_estimator(X_train,y_train)

a = [-3.1633736 , -1.46077299, 4.62770649]

b = [-3.16337360e+00, -1.46077299e+00, 4.62770649e+00, 3.73347575e-10,

-7.12134351e-10, 3.27872840e-10]

Notice that a and b̂ are virtually identical, since the trailing values of b̂ all equal zero.
We then plot the resulting values of the data generating function, and our empirical risk
minimizer, f∗(x),

6

The resulting quadratic is purple, because f∗(x) and the data generating function are in-
deed the same function.

10. Now you can adjust d. What is the minimum value for which we get a “perfect
fit”? How does this result relates with your conclusions on the approximation
error above?

We note that d = 2 is the minimum value for which we get a “perfect fit”. Observe the
plot for d = 1,

7

Now we will modify the true underlying PX×Y , adding some noise in y = g(x) + ε,
with ε ∼ N (0, 1) a standard normal random variable independent from x. We will
call training error et the empirical risk on the train set and generalization error eg
the empirical risk on the test set.

The following code was used for questions 11 and 12,

risks_train = []

risks_test_a = []

risks_test_b = []

estimation_err = []

x_test,y_test = draw_sample_with_noise(2, a, 1000)

x_train,y_train = draw_sample_with_noise(2, a, 1000)

for d in [2,5,10]:

X_train = get_design_mat(x_train, d)

X_test = get_design_mat(x_test, d)

X_test_a = get_design_mat(x_test, 2)

risk_test_a = []

risk_test_b = []

risk_train = []

esti_err = []

for ind in range(d+1,1000):

b = least_square_estimator(X_train[:ind],y_train[:ind])

8

r_train = empirical_risk(X_train[:ind],y_train[:ind],b)

r_test_b = empirical_risk(X_test,y_test,b)

r_test_a = empirical_risk(X_test_a,y_test,a)

esti = r_test_b - r_test_a

risk_test_a.append(r_test_a)

risk_test_b.append(r_test_b)

risk_train.append(r_train)

esti_err.append(esti)

estimation_err.append(esti_err)

risks_train.append(risk_train)

risks_test_a.append(risk_test_a)

risks_test_b.append(risk_test_b)

11. Plot et and eg as a function of N for d < N < 1000 for d = 2, d = 5 and d = 10
(Plot 2). You may want to use a logarithmic scale in the plot. Include also
plots similar to Plot 1 for 2 or 3 different values of N for each value of d.

First, we plot et and eg as functions of N and d. As N increases, we see that each function
stabilizes to the same training error. A similar result is true of the testing data, though
d = 2 still out performs the other degrees. Furthermore, we also plot similar plots to Plot 1.

9

10

12. Recall the definition of the estimation error. Using the test set, (which we
intentionally chose large so as to take advantage of the law of large numbers)
give an empirical estimator of the estimation error. For the same values of N
and d above plot the estimation error as a function of N (Plot 3).

We can find the estimation error by use of the following formula,

EstimationError = R(f̂n)−R(fF) (19)

EstimationError =
1

n

n∑
i=1

(f(xi)− yi)2 − E[(g(x)− (g(x) +N (0, 1)))2] (20)

EstimationError =
1

n

n∑
i=1

(f(xi)− yi)2 − E[(g(x)− (g(x) +N (0, 1)))2] (21)

EstimationError =
1

n

n∑
i=1

(f(xi)− yi)2 (22)

Where f̂n is the least-squares fitted function by use of n data points of the training set
and fF is g(x). However, since we have a limited sample size, R(fF) is generally non-zero

11

and constant. We then have the following result,

We note that this result is similar in form to the previous empirical risk on the test set, eg.
This is because fF is g(x), which produces a constant R(fF). Therefore, the estimation
error is simply the empirical risk on the test set, but shifted by R(fF).

13. The generalization error gives, in practice, information related to the estima-
tion error. Comment on the results of Plot 2 and 3. What is the effect of
increasing N? What is the effect of increasing d?

As mentioned, the estimation error is simply the empirical risk on the test set, but shifted
by R(fF), which is constant when observed as a function of N . Increasing N , the amount of
training data used, results in a lower generalization error and estimation error. Increasing
d, when the data generating function is of degree two, produces greater generalization error
and estimation error.

14. Besides from the approximation and estimation there is a last source of error
we have not discussed here. Can you comment on the optimization error of
the algorithm we are implementing?

There is no optimization error given the algorithm that we are using, because we are using
the closed form solution. If we used something like gradient descent, we would then have

12

optimization error.

(Optional) You can now use the code we developed on the synthetic example
on a real world dataset. Using the command np.loadtxt(‘ozone wind.data’) load
the data in the .zip. The first column corresponds to ozone measurements and the
second to wind measurements. You can try polynomial fits of the ozone values as a
function of the wind values.

15. Reporting plots, discuss the again in this context the results when varying N
(subsampling the training data) and d.

The following code was used to create fits for the data,

data = np.loadtxt('ozone_wind.data')

wind = data[:,1]

ozone = data[:,0]

degree = 4

windX = get_design_mat(wind, degree)

x_vals = np.arange(2,20,0.1)

X_vals = get_design_mat(x_vals, degree)

b = least_square_estimator(windX,ozone)

We see that when using the training data, d = 1 provides the best fit for a number of rea-
sons. All other degree-fits seem to suggest a positive relationship between wind and ozone
near the higher end wind values. Nothing provides strong evidence of such a relationship.

13

14

