
DS-GA 1003 - Homework 2

Eric Niblock

February 10th, 2021

We have provided you with a file called ridge regression dataset.csv. Columns x0

through x47 correspond to the input and column y corresponds to the output. We
are trying to fit the data using a linear model and gradient based methods. Please
also check the supporting code in skeleton code.py. Throughout this problem, we
refer to particular blocks of code to help you step by step.

When feature values differ greatly, we can get much slower rates of convergence
of gradient-based algorithms. Furthermore, when we start using regularization,
features with larger values are treated as “more important”, which is not usually
desired.

One common approach to feature normalization is perform an affine transformation
(i.e. shift and rescale) on each feature so that all feature values in the training set
are in [0, 1]. Each feature gets its own transformation. We then apply the same
transformations to each feature on the validation set or test set. Importantly, the
transformation is “learned” on the training set, and then applied to the test set. It
is possible that some transformed test set values will lie outside the [0, 1] interval.

1. Modify function feature normalization to normalize all the features to [0, 1].
Can you use numpy’s broadcasting here? Often broadcasting can help to sim-
plify and/or speed up your code. Note that a feature with constant value
cannot be normalized in this way. Your function should discard features that
are constant in the training set.

The following code normalizes the features of the training data as described, and provides
the same transformation to test data. Before the transformation, constant columns of the
training data (and therefore the analogous columns of the test data) are removed.

def feature_normalization(train, test):

"""Rescale the data so that each feature in the training set is in

the interval [0,1], and apply the same transformations to the test

set, using the statistics computed on the training set.

Args:

1

train - training set, a 2D numpy array of size(num_instances, num_features)

test - test set, a 2D numpy array of size(num_instances, num_features)

Returns:

train_normalized - training set after normalization

test_normalized - test set after normalization

"""

non_cons = ~(train == train[0,:]).all(0)

train = train[:, non_cons] ## Removes constant columns

test = test[:, non_cons]

mini = np.amin(train,axis=0) ## Finds column-wise minimums

train_shift = train - mini ## Shifts by column minimums

maxi = np.amax(train_shift,axis=0) ## Finds column-wise maximums

train_normalized = train_shift / maxi ## Divides by column maximums

test_shift = test - mini

test_normalized = test_shift / maxi

return(train_normalized, test_normalized)

At the end of the skeleton code, the function load data loads, split into a training
and test set, and normalize the data using your feature normalization.

In linear regression, we consider the hypothesis space of linear functions hθ : Rd → R,
where

hθ(x) = θTx,

for θ,x ∈ Rd, and we choose θ that minimizes the following “average square loss”
objective function:

J(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)2 ,

where (x1, y1), . . . , (xm, ym) ∈ Rd × R is our training data.

While this formulation of linear regression is very convenient, it’s more standard to
use a hypothesis space of affine functions:

hθ,b(x) = θTx+ b,

which allows a nonzero intercept term b – sometimes called a “bias” term. The
standard way to achieve this, while still maintaining the convenience of the first
representation, is to add an extra dimension to x that is always a fixed value, such

2

as 1, and use θ, x ∈ Rd+1. Convince yourself that this is equivalent. We will assume
this representation.

2. Let X ∈ Rm×(d+1) be the design matrix, where the i’th row of X is xi. Let
y = (y1, . . . , ym)

T ∈ Rm×1 be the response. Write the objective function J(θ) as a
matrix/vector expression, without using an explicit summation sign.

First, we have that,

X =


1 x1,2 · · · x1,d+1

1 x2,2 · · · x2,d+1

...
...

...
...

1 xm,2 · · · xm,d+1

 y = [y1, y2, · · · , ym]>. (1)

Then we can define θ as being,

θ =

 θ1
...

θd+1

 (2)

It follows then that,

J(θ) =
1

m
||Xθ − y||22 =

1

m

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣


1 x1,2 · · · x1,d+1

1 x2,2 · · · x2,d+1

...
...

...
...

1 xm,2 · · · xm,d+1


 θ1

...
θd+1

−
 y1...
ym


∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
=

1

m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 θ1 + θ2x1,2 + ...+ θd+1x1,d+1 − y1

...
θ1 + θ2xm,2 + ...+ θd+1xm,d+1 − ym


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
1

m

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
 hθ,b(x1)− y1

...
hθ,b(xm)− ym


∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

=
1

m

m∑
i=1

(hθ,b(xi)− yi)2

(3)

3

In other words, in matrix representation, we can express J(θ) as,

J(θ) =
1

m
||Xθ − y||22 (4)

3. Write down an expression for the gradient of J without using an explicit sum-
mation sign.

We have that,

∇θJ(θ) =
1

m
∇θ||Xθ − y||22

=
1

m
∇θ
(
(Xθ − y)T (Xθ − y)

)
=

2XT · (Xθ − y)

m

(5)

4. Write down the expression for updating θ in the gradient descent algorithm
for a step size η.

If we call t the time-step, then we have that,

θt+1 = θt − η∇θJ(θ) (6)

θt+1 = θt −
2ηXT · (Xθt − y)

m
(7)

5. Modify the function compute square loss, to compute J(θ) for a given θ. You
might want to create a small dataset for which you can compute J(θ) by hand,
and verify that your compute square loss function returns the correct value.

The following code computes the square loss using matrix notation,

4

def compute_square_loss(X, y, theta):

"""

Given a set of X, y, theta, compute the average square loss for

predicting y with X*theta.

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

theta - the parameter vector, 1D array of size(num_features)

Returns:

loss - the average square loss, scalar

"""

loss = (1/X.shape[0])*np.linalg.norm((X @ theta - y))

return(loss)

6. Modify the function compute square loss gradient, to compute ∇θJ(θ). You may
again want to use a small dataset to verify that your compute square loss gradient

function returns the correct value.

The following code computes the gradient of the square loss,

def compute_square_loss_gradient(X, y, theta):

"""

Compute the gradient of the average square loss (as defined in

compute_square_loss), at the point theta.

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

theta - the parameter vector, 1D numpy array of size(num_features)

Returns:

grad - gradient vector, 1D numpy array of size(num_features)

"""

grad = (1/X.shape[0])*2*X.T @ (X @ theta - y)

return(grad)

If J : Rd → R is differentiable, then for any vector h ∈ Rd, the directional derivative
of J at θ in the direction h is given by

lim
ε→0

J(θ + εh)− J(θ − εh)

2ε
.

5

It is also given by the more standard definition of directional derivative,

lim
ε→0

1

ε
[J(θ + εh)− J(θ)] .

The former form gives a better approximation to the derivative when we are using
small (but not infinitesimally small) ε. We can approximate this directional deriva-
tive by choosing a small value of ε > 0 and evaluating the quotient above. We can
get an approximation to the gradient by approximating the directional derivatives
in each coordinate direction and putting them together into a vector. In other
words, take h = (1, 0, 0, . . . , 0) to get the first component of the gradient. Then take
h = (0, 1, 0, . . . , 0) to get the second component, and so on.

7. Complete the function grad checker according to the documentation of the
function given in the skeleton code.py. Alternatively, you may complete the
function generic grad checker which can work for any objective function.

Below is the code which numerically checks the gradient,

def grad_checker(X, y, theta, epsilon=0.01, tolerance=1e-4):

"""Implement Gradient Checker

Check that the function compute_square_loss_gradient returns the

correct gradient for the given X, y, and theta.

Let d be the number of features. Here we numerically estimate the

gradient by approximating the directional derivative in each of

the d coordinate directions:

(e_1 =(1,0,0,...,0), e_2 =(0,1,0,...,0), ..., e_d =(0,...,0,1))

The approximation for the directional derivative of J at the point

theta in the direction e_i is given by:

(J(theta + epsilon * e_i) - J(theta - epsilon * e_i)) /(2*epsilon).

We then look at the Euclidean distance between the gradient

computed using this approximation and the gradient computed by

compute_square_loss_gradient(X, y, theta). If the Euclidean

distance exceeds tolerance, we say the gradient is incorrect.

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

theta - the parameter vector, 1D numpy array of size(num_features)

epsilon - the epsilon used in approximation

tolerance - the tolerance error

Return:

A boolean value indicating whether the gradient is correct or not

"""

6

true_gradient = compute_square_loss_gradient(X, y, theta) #The true gradient

num_features = theta.shape[0]

approx_grad = np.zeros(num_features) #Initialize the gradient we approximate

for d in range(num_features):

h = np.zeros(num_features)

h[d] = 1

higher = compute_square_loss(X, y, theta+(epsilon*h))

lower = compute_square_loss(X, y, theta-(epsilon*h))

approx_grad[d] = (higher-lower)/(2*epsilon)

norm = np.linalg.norm(true_gradient - approx_grad)

if norm < tolerance:

return(True)

else:

return(False)

You should be able to check that the gradients you computed above remain correct
throughout the learning below.

We can confirm that this code works. Take the following example, which returns True,

X = np.array([[1,8,4,2,56],[1,4,2,6,96],[3,2,1,6,6]])

y = np.array([4,3.3,2])

theta = np.array([4,1,6,4,3])

grad_checker(X,y,theta, epsilon=0.01, tolerance=1e-4)

We will now finish the job of running regression on the training set.

8. Complete batch gradient descent. Note the phrase batch gradient descent dis-
tinguishes between stochastic gradient descent or more generally minibatch
gradient descent.

The following code is used to employ full-batch gradient descent, where the gradient check
is used to stop the descent if the algorithm begins to diverge uncontrollably,

def batch_grad_descent(X, y, alpha=0.1, num_step=1000, grad_check=False):

"""

In this question you will implement batch gradient descent to

7

minimize the average square loss objective.

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

alpha - step size in gradient descent

num_step - number of steps to run

grad_check - a boolean value indicating whether checking the gradient

when updating

Returns:

theta_hist - the history of parameter vector, 2D numpy array of

size(num_step+1, num_features) for instance, theta in step 0 should be

theta_hist[0], theta in step(num_step) is theta_hist[-1]

loss_hist - the history of average square loss on the data, 1D numpy array,

(num_step+1)

"""

num_instances, num_features = X.shape[0], X.shape[1]

theta_hist = np.zeros((num_step + 1, num_features)) #Initialize theta_hist

loss_hist = np.zeros(num_step + 1) #Initialize loss_hist

theta = np.zeros(num_features) #Initialize theta

for n in range(num_step+1):

loss_hist[n] = compute_square_loss(X, y, theta)

theta_hist[n,:] = theta

grad = compute_square_loss_gradient(X, y, theta)

if grad_check == True:

if grad_checker(X,y,theta, epsilon=0.01, tolerance=1e-4) == False:

print('Error: Gradient Incorrect, Stopped at Timestep: ',n)

break

theta_temp = theta - alpha*grad

theta = theta_temp

return(theta_hist,loss_hist)

9. Now let’s experiment with the step size. Note that if the step size is too large,
gradient descent may not converge. Starting with a step-size of 0.1, try various
different fixed step sizes to see which converges most quickly and/or which
diverge. As a minimum, try step sizes 0.5, 0.1, .05, and .01. Plot the average
square loss on the training set as a function of the number of steps for each
step size. Briefly summarize your findings.

First, we supply the code necessary to evaluate the various step-sizes,

8

X_train, y_train, X_test, y_test = load_data()

theta_hist0, loss_hist0 = batch_grad_descent(X_train, y_train, alpha=0.5,

num_step=1000, grad_check=True)

theta_hist1, loss_hist1 = batch_grad_descent(X_train, y_train, alpha=0.1,

num_step=1000, grad_check=True)

theta_hist2, loss_hist2 = batch_grad_descent(X_train, y_train, alpha=0.05,

num_step=1000, grad_check=True)

theta_hist3, loss_hist3 = batch_grad_descent(X_train, y_train, alpha=0.01,

num_step=1000, grad_check=True)

We generated two plots which reveal the average training loss as a function of the step-size
and time-step. The first plot reveals divergent trends, resulting from a step-size which is
too large. The second plot reveals convergent plots, with step-sizes that are sufficiently
small,

It is clear from the plots that a step size of α = 0.05 is ideal when compared to the other
step-sizes. Step-sizes which are larger than or equal to 0.1 diverge, and thus cause the
gradient descent to halt before reaching 1000 time-steps. In these cases the step-size is
too large, and the update method continually misses the minimum, jumping farther and
farther away.

10. For the learning rate you selected above, plot the average test loss as a function
of the iterations. You should observe overfitting: the test error first decreases

9

and then increases.

The code necessary to evaluate the test loss is provided here,

num_step = 1000

test_loss_hist = np.zeros(num_step + 1)

for t in range(len(theta_hist)):

test_loss_hist[t] = compute_square_loss(X_test, y_test, theta_hist[t])

Here, we see the average test loss as a function of time-step at a learning rate of α = 0.05.

As expected, the test loss first decreases to a minimum around t = 200 and then begins to
increase again due to over-fitting.

We will add `2 regularization to linear regression. When we have a large number of
features compared to instances, regularization can help control overfitting. Ridge
regression is linear regression with `2 regularization. The regularization term is
sometimes called a penalty term. The objective function for ridge regression is

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)2 + λθT θ,

10

where λ is the regularization parameter, which controls the degree of regularization.
Note that the bias term (which we included as an extra dimension in θ) is being
regularized as well as the other parameters. Sometimes it is preferable to treat this
term separately.

11. Compute the gradient of Jλ(θ) and write down the expression for updating θ
in the gradient descent algorithm. (Matrix/vector expression, without explicit
summation)

We have that Jλ(θ) is in part composed of J(θ), such that,

Jλ(θ) = J(θ) + λθT θ (8)

And therefore the gradient is much easier to calculate,

∇θJλ(θ) =
2XT · (Xθ − y)

m
+∇θ(λθT θ)

=
2XT · (Xθ − y)

m
+ 2λθ

(9)

12. Implement compute regularized square loss gradient.

def compute_regularized_square_loss_gradient(X, y, theta, lambda_reg):

"""

Compute the gradient of L2-regularized average square loss function

given X, y and theta

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

theta - the parameter vector, 1D numpy array of size(num_features)

lambda_reg - the regularization coefficient

Returns:

grad - gradient vector, 1D numpy array of size(num_features)

"""

grad = ((1/X.shape[0])*2*X.T @ (X @ theta - y))+2*lambda_reg*theta

return(grad)

11

13. Implement regularized grad descent.

def regularized_grad_descent(X, y, alpha=0.05, lambda_reg=10**-2, num_step=1000):

"""

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

alpha - step size in gradient descent

lambda_reg - the regularization coefficient

num_step - number of steps to run

Returns:

theta_hist - the history of parameter vector, 2D numpy array of

size(num_step+1, num_features) for instance, theta in step 0 should

be theta_hist[0], theta in step(num_step+1) is theta_hist[-1]

loss hist - the history of average square loss function without the

regularization term, 1D numpy array.

"""

num_instances, num_features = X.shape[0], X.shape[1]

theta = np.zeros(num_features) #Initialize theta

theta_hist = np.zeros((num_step+1, num_features)) #Initialize theta_hist

loss_hist = np.zeros(num_step+1) #Initialize loss_hist

for n in range(num_step+1):

loss_hist[n] = compute_square_loss(X, y, theta)

theta_hist[n,:] = theta

grad = compute_regularized_square_loss_gradient(X, y, theta, lambda_reg)

if grad_checker(X,y,theta, epsilon=0.01, tolerance=1e-4) == False:

print('Error: Gradient Incorrect, Stopped at Timestep: ',n)

break

theta_temp = theta - alpha*grad

theta = theta_temp

return(theta_hist,loss_hist)

Our goal is to find λ that gives the minimum average square loss on the test set. So
you should start your search very broadly, looking over several orders of magnitude.
For example, λ ∈

{
10−7, 10−5, 10−3, 10−1, 1, 10, 100

}
. Then you can zoom in on the best

range. Follow the steps below to proceed.

12

14. Choosing a reasonable step-size, plot training average square loss and the test
average square loss (just the average square loss part, without the regulariza-
tion, in each case) as a function of the training iterations for various values of
λ. What do you notice in terms of overfitting?

Here is the code employed to provide the training losses,

losses = []

thetas = []

for lambda_reg_s in [10**-7,10**-4,0.01,0.1,1]:

theta, loss = regularized_grad_descent(X_train, y_train, alpha=0.05,

lambda_reg=lambda_reg_s, num_step=1000)

losses.append(loss)

thetas.append(theta)

And the test losses,

test_losses = []

for choice in thetas:

num_step = 1000

test_loss_hist = np.zeros(num_step + 1)

for t in range(len(choice)):

test_loss_hist[t] = compute_square_loss(X_test, y_test, choice[t])

test_losses.append(test_loss_hist)

Below we have plots for the test and training losses for various values of λ,

13

Note that the plot for λ = 1 diverges off of our scale. Additionally, the loss associated with
λ = 10−7 is nearly identical to the loss regarding λ = 10−4. Therefore, it isn’t all that
visible on either plot. In terms of overfitting, notice that values of λ < 1 overfit, as seen by
the testing losses which decrease to minimums around t = 200 and then begin to increase.
You may also notice that the test loss plots are thick in some regions. This is because the
test loss is actually oscillating around some minimal region, though overall is decreasing.

15. Plot the training average square loss and the test average square loss at the
end of training as a function of λ. You may want to have log(λ) on the x-axis
rather than λ. Which value of λ would you choose?

The code used to generate our square loss as a function of λ as the end of training and
test, as well as at the minimum test loss value is provided,

losses = []

thetas = []

values = np.append([10**-7,10**-6,10**-5,10**-4,],np.linspace(10**-3,0.1,30))

for lambda_reg_s in values:

theta, loss = regularized_grad_descent(X_train, y_train, alpha=0.05,

lambda_reg=lambda_reg_s, num_step=1000)

losses.append(loss)

thetas.append(theta)

test_loss = []

14

for theta in thetas:

test_loss.append(compute_square_loss(X_test, y_test, theta[-1]))

min_loss = []

for theta in thetas:

temp = []

for t in theta:

temp.append(compute_square_loss(X_test, y_test, t))

min_loss.append(min(temp))

We then provided a plot of the final training loss, final test loss, and minimum test loss,
each as a function of log(λ),

From analyzing the final testing loss, it is clear that we should select λ ≈ 0.025.

16. Another heuristic of regularization is to early-stop the training when the test
error reaches a minimum. Add to the last plot the minimum of the test average
square loss along training as a function of λ. Is the value λ you would select
with early stopping the same as before?

First, observe that the plot from the previous question includes the minimum test loss.
The value of λ that creates the minimum testing loss is the same when considering either
the final testing loss, or the minimum testing loss as a result of early-stopping. This value
of λ is approximately 0.025. We would therefore select the same value of λ as before.

15

17. What θ would you select in practice and why?

We should select the value of θ which minimizes the testing loss, whether at the end of
training or through early-stopping (in this case, it doesn’t matter). We note that this value
of θ occurs when α = 0.05 and λ = 0.025. The value of theta is not given here because of
its size.

When the training data set is very large, evaluating the gradient of the objective
function can take a long time, since it requires looking at each training example to
take a single gradient step.

In SGD, rather than taking −∇θJ(θ) as our step direction to minimize

J(θ) =
1

m

m∑
i=1

fi(θ),

we take −∇θfi(θ) for some i chosen uniformly at random from {1, . . . ,m}. The ap-
proximation is poor, but we will show it is unbiased.

In machine learning applications, each fi(θ) would be the loss on the ith example. In
practical implementations for ML, the data points are randomly shuffled, and then
we sweep through the whole training set one by one, and perform an update for
each training example individually. One pass through the data is called an epoch.
Note that each epoch of SGD touches as much data as a single step of batch gradi-
ent descent. You can use the same ordering for each epoch, though optionally you
could investigate whether reshuffling after each epoch affects the convergence speed.

18. Show that the objective function

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)2 + λθT θ

can be written in the form Jλ(θ) = 1
m

∑m
i=1 fi(θ) by giving an expression for fi(θ)

that makes the two expressions equivalent.

Since we have that,

Jλ(θ) =
1

m

m∑
i=1

(hθ(xi)− yi)2 + λθT θ =
1

m

m∑
i=1

fi(θ) (10)

16

It is trivial that,

fi(θ) = (hθ(xi)− yi)2 + λθT θ (11)

fi(θ) =
(
θTxi − yi

)2
+ λθT θ (12)

19. Show that the stochastic gradient ∇θfi(θ), for i chosen uniformly at random
from {1, . . . ,m}, is an unbiased estimator of ∇θJλ(θ). In other words, show
that E [∇fi(θ)] = ∇Jλ(θ) for any θ. It will be easier to prove this for a general
J(θ) = 1

m

∑m
i=1 fi(θ), rather than the specific case of ridge regression. You can

start by writing down an expression for E [∇fi(θ)].

We have that,

E[∇fi(θ)] = E
[
2(θTxi − yi) · xi + 2λθ

]
= 2E[(θTxi) · xi]− 2E[yixi] + 2E[λθ]

= 2E

 d∑
j=1

θdxi,d

 · xi
− 2E[yixi] + 2λθ

(13)

Now, since each xi is being chosen uniformly at random from the possible xis, the proba-
bility of any xi being chosen is simply 1

m . Now, we can evaluate the expectations,

E[∇fi(θ)] = 2

m∑
i=1

1

m

 d∑
j=1

θdxi,d

 · xi
− 2

m∑
i=1

yixi
m

+ 2λθ (14)

However, we can remove the summations by writing this in matrix notation, yielding,

E[∇fi(θ)] =
2

m

(
XTXθ −XT y

)
+ 2λθ (15)

However, this is precisely ∇θJλ(θ). Therefore ∇fi(θ) is an unbiased estimator of ∇θJλ(θ).

17

20. Write down the update rule for θ in SGD for the ridge regression objective
function.

If we call t the time-step, then we have,

θt+1 = θt − η∇θfi(θ) (16)

Which is given by,

θt+1 = θt − 2η((θTxi − yi) · xi + λθ) (17)

21. Implement stochastic grad descent.

def stochastic_grad_descent(X, y, alpha=0.1, lambda_reg=10**-2,

num_epoch=1000, eta0=False):

"""

In this question you will implement stochastic gradient descent with

regularization term

Args:

X - the feature vector, 2D numpy array of size(num_instances, num_features)

y - the label vector, 1D numpy array of size(num_instances)

alpha - string or float, step size in gradient descent

NOTE: In SGD, it's not a good idea to use a fixed step size.

Usually it's set to 1/sqrt(t) or 1/t

if alpha is a float, then the step size in every step is the float.

if alpha == "1/sqrt(t)", alpha = 1/sqrt(t).

if alpha == "1/t", alpha = 1/t.

lambda_reg - the regularization coefficient

num_epoch - number of epochs to go through the whole training set

Returns:

theta_hist - the history of parameter vector, 3D numpy array of

size(num_epoch, num_instances, num_features) for instance,

theta in epoch 0 should be theta_hist[0], theta in epoch(num_epoch)

is theta_hist[-1]

loss hist - the history of loss function vector, 2D numpy array of

size(num_epoch, num_instances)

"""

18

num_instances, num_features = X.shape[0], X.shape[1]

theta = np.ones(num_features) #Initialize theta

theta_hist = np.zeros((num_epoch, num_instances, num_features))

loss_hist = np.zeros((num_epoch, num_instances))

rc = list(range(num_instances))

for n in range(num_epoch):

np.random.shuffle(rc)

if alpha == "1/sqrt(t)":

step = 0.01/((n+1)**0.5)

if alpha == "1/t":

step = 0.01/(n+1)

if type(alpha) == float:

step = alpha

for r in rc:

xi = X[r]

xi = xi[np.newaxis,:]

yi = y[r]

loss_hist[n,r] = compute_square_loss(X, y, theta)

theta_hist[n,r,:] = theta

grad = compute_regularized_square_loss_gradient(xi, yi, theta, lambda_reg)

theta_temp = theta - step*grad

theta = theta_temp

return(theta_hist,loss_hist)

22. Use SGD to find θ∗λ that minimizes the ridge regression objective for the λ you
selected in the previous problem. (If you could not solve the previous problem,
choose λ = 10−2). Try a few fixed step sizes (at least try ηt ∈ {0.05, .005}). Note
that SGD may not converge with fixed step size. Simply note your results.
Next try step sizes that decrease with the step number according to the fol-
lowing schedules: ηt = C

t and ηt = C√
t
, C ≤ 1. Please include C = 0.1 in your

submissions. You are encouraged to try different values of C (see notes below
for details). For each step size rule, plot the value of the objective function (or
the log of the objective function if that is more clear) as a function of epoch
(or step number, if you prefer). How do the results compare?

We ran stochastic gradient descent with different step-sizes using the code below,

19

thetas, loss_sqrt = stochastic_grad_descent(X_train, y_train,

alpha="1/sqrt(t)", lambda_reg=10**-2, num_epoch=1000, eta0=False)

thetas, loss_1t = stochastic_grad_descent(X_train, y_train,

alpha="1/t", lambda_reg=10**-2, num_epoch=1000, eta0=False)

thetas, loss = stochastic_grad_descent(X_train, y_train,

alpha=0.01, lambda_reg=10**-2, num_epoch=1000, eta0=False)

We then plotted the training loss at the end of each epoch for each step-size method,
achieving the following,

First, it is important to note that it was necessary to use C = 0.01 to achieve any type of
convergence using any method. Furthermore, we see that the constant step-size results in
a non-convergent training loss as a function of epoch. This is expected. When using the
decreasing step-sizes, we do achieve convergence, with α = 1√

t
providing a final training

loss that is comparable with the other gradient descent methods.

A few remarks about the question above:

• In this case we are investigating the convergence rate of the optimization algo-
rithm with different step size schedules, thus we’re interested in the value of
the objective function, which includes the regularization term.

20

• Sometimes the initial step size (C for C/t and C/
√
t) is too aggressive and will

get you into a part of parameter space from which you can’t recover. Try
reducing C to counter this problem.

• SGD convergence is much slower than GD once we get close to the minimizer
(remember, the SGD step directions are very noisy versions of the GD step
direction). If you look at the objective function values on a logarithmic scale, it
may look like SGD will never find objective values that are as low as GD gets.
In statistical learning theory terminology, GD has much smaller optimization
error than SGD. However, this difference in optimization error is usually dom-
inated by other sources of error (estimation error and approximation error).
Moreover, for very large datasets, SGD (or minibatch GD) is much faster (by
wall-clock time) than GD to reach a point close enough to the minimizer.

In this second problem set we will examine a classification problem. To do so we will
use the MNIST dataset1 which is one of the traditional image benchmark for ma-
chine learning algorithms. We will only load the data from the 0 and 1 class, and try
to predict the class from the image. You will find the support code for this problem
in mnist classification source code.py. Before starting, take a little time to inspect
the data. Load X train, y train, X test, y test with pre process mnist 01(). Using
the function plt.imshow from matplotlib visualize some data points from X train by
reshaping the 764 dimensional vectors into 28× 28 arrays. Note how the class labels
‘0’ and ‘1’ have been encoded in y train. No need to report these steps in your
submission.

We will use here again a linear model, meaning that we will fit an affine function,

hθ,b(x) = θTx+ b,

with x ∈ R764, θ ∈ R764 and b ∈ R. This time we will use the logistic loss instead of
the squared loss. Instead of coding everything from scratch, we will also use the
package scikit learn and study the effects of `1 regularization. You may want to
check that you have a version of the package up to date (0.24.1).

23. Recall the definition of the logistic loss between target y and a prediction hθ,b(x)
as a function of the margin m = yhθ,b(x). Show that given that we chose the
convention yi ∈ {−1, 1}, our objective function over the training data {xi, yi}mi=1

can be re-written as

L(θ) =
1

2m

m∑
i=1

(1 + yi) log(1 + e−hθ,b(xi)) + (1− yi) log(1 + ehθ,b(xi)).

We have that,

1http://yann.lecun.com/exdb/mnist/

21

http://yann.lecun.com/exdb/mnist/

`Logistic(θ) = log(1 + e−m) = log(1 + e−yihθ,b(xi)) (18)

Which implies that,

`Logistic(θ) =

{
log(1 + e−hθ,b(xi)), if yi = 1

log(1 + ehθ,b(xi)), if yi = −1
(19)

Now let’s define a different function `(θ),

`(θ) =
1

2

(
(1 + yi) log(1 + e−hθ,b(xi)) + (1− yi) log(1 + ehθ,b(xi))

)
(20)

Notice that this function provides the same implication as before,

`(θ) =

{
log(1 + e−hθ,b(xi)), if yi = 1

log(1 + ehθ,b(xi)), if yi = −1
(21)

So, therefore, we have,

L(θ) =
1

2m

m∑
i=1

(1+yi) log(1+e−hθ,b(xi))+(1−yi) log(1+ehθ,b(xi)) =

m∑
i=1

`Logistic,i(θ) (22)

It is clear that this is the objective function, because it is the sum of logistic losses.

24. What will become the loss function if we regularize the coefficients of θ with
an `1 penalty using a regularization parameter α ?

We can add `1 regularization with parameter α as below,

22

L(θ) =
1

2m

m∑
i=1

(1 + yi) log(1 + e−hθ,b(xi)) + (1− yi) log(1 + ehθ,b(xi)) + α

d∑
j=1

|θj | (23)

Where d is the size of the vector θ.

We are going to use the module SGDClassifier from scikit learn. In the code provided
we have set a little example of its usage. By checking the online documentation2,
make sure you understand the meaning of all the keyword arguments that were
specified. We will keep the learning rate schedule and the maximum number of
iterations fixed to the given values for all the problem. Note that scikit learn is
actually implementing a fancy version of SGD to deal with the `1 penalty which is
not differentiable everywhere, but we will not enter these details here.

25. To evaluate the quality of our model we will use the classification error, which
corresponds to the fraction of incorrectly labeled examples. For a given sam-
ple, the classification error is 1 if no example was labeled correctly and 0 if
all examples were perfectly labeled. Using the method clf.predict() from the
classifier write a function that takes as input an SGDClassifier which we will
call clf, a design matrix X and a target vector y and returns the classification
error. You should check that your function returns the same value as
1 - clf.score(X, y).

The following function returns the rate of classification error,

def classification_error(clf, X, y):

preds = clf.predict(X)

correct = np.count_nonzero(preds == y)

return(1 - (correct/len(y)))

To speed up computations we will subsample the data. Using the function sub sample,
restrict X train and y train to N train = 100.

26. Report the test classification error achieved by the logistic regression as a
function of the regularization parameters α (taking 10 values between 10−4 and
10−1). You should make a plot with α as the x-axis in log scale. For each value
of α, you should repeat the experiment 10 times so has to finally report the
mean value and the standard deviation. You should use plt.errorbar to plot

2https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

23

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

the standard deviation as error bars.

The following is the code used to generate the plot of classification error as a function of
alpha,

alphas = np.logspace(-4,-1,10)

alpha_means = []

alpha_stds = []

for a in alphas:

errs = []

for t in range(10):

X_sub, y_sub = sub_sample(100, X_train, y_train)

clf = SGDClassifier(loss='log', max_iter=1000,

tol=1e-3,

penalty='l1', alpha=a,

learning_rate='invscaling',

power_t=0.5,

eta0=0.01,

verbose=1)

clf.fit(X_sub, y_sub)

err = class_error(clf, X_test, y_test)

errs.append(err)

alpha_means.append(np.mean(errs))

alpha_stds.append(np.std(errs))

These are the results, which suggest that increasing α (until some threshold) decreases the
classification error. In other words, adding regularization is effective in lowering classifica-
tion error.

24

27. Which source(s) of randomness are we averaging over by repeating the exper-
iment?

By repeating the experiment multiple times, and selecting a new subset of the training
data each run, we are averaging over the randomness that occurs when selecting a random
sample. It is always possible that sample selection will result in sampling error. This
occurs when our sample is a biased representation of our population. By averaging over
different samples of the training data, we remove the randomness associated with selecting
a random sample, which helps to eradicate bias.

28. What is the optimal value of the parameter α among the values you tested?

Of the values of α that we tested, α = 0.1 is optimal because it reduces the classification
error to a minimum within our domain (in other words, there may be a more ideal α,
though of the ones we tested, α = 0.1 provides the best results).

29. Finally, for one run of the fit for each value of α plot the value of the fit-
ted θ. You can access it via clf.coef , and should reshape the 764 dimen-
sional vector to a 28 × 28 arrray to visualize it with plt.imshow. Defining

25

scale = np.abs(clf.coef).max(), you can use the following keyword arguments
(cmap=plt.cm.RdBu, vmax=scale, vmin=-scale) which will set the colors nicely in
the plot. You should also use a plt.colorbar() to visualize the values associ-
ated with the colors.

Below is the code used to generate the data necessary for our visualization,

alphas = np.logspace(-4,-1,10)

thetas = []

for a in alphas:

X_sub, y_sub = sub_sample(100, X_train, y_train)

clf = SGDClassifier(loss='log', max_iter=1000,

tol=1e-3,

penalty='l1', alpha=a,

learning_rate='invscaling',

power_t=0.5,

eta0=0.01,

verbose=1)

clf.fit(X_sub, y_sub)

thetas.append(clf.coef_)

data = []

for t in thetas:

re_t = np.reshape(t,(28,28))

scale = np.abs(re_t).max()

data.append((re_t,scale))

And here is the resulting visualization,

26

30. What can you note about the pattern in θ? What can you note about the effect
of the regularization?

The resulting pattern regarding θ and effect of regularization are fairly obvious. As we
progress to larger values of α, regularization becomes more prominent, and many of the
coefficients of θ are being set to zero. This is the expected result when using `1 regular-
ization. As α increases, regularization contributes more to the overall loss, and in order to
be reduced, the algorithm removes emphasis from a plethora of features.

27

