
DS-GA 1003 - Homework 3

Eric Niblock

February 24th, 2021

In this first problem we will use Support Vector Machines to predict whether the
sentiment of a movie review was positive or negative. We will represent each review
by a vector x ∈ Rd where d is the size of the word dictionary and xi is equal to the
number of occurrence of the i-th word in the review x. The corresponding label is
either y = 1 for a positive review or y = −1 for a negative review. In class we have
seen how to transform the SVM training objective into a quadratic program using
the dual formulation. Here we will use a gradient descent algorithm instead.

Recall that a vector g ∈ Rd is a subgradient of f : Rd → R at x if for all z,

f(z) ≥ f(x) + gT (z − x).

There may be 0, 1, or infinitely many subgradients at any point. The subdifferential
of f at a point x, denoted ∂f(x), is the set of all subgradients of f at x. A good ref-
erence for subgradients are the course notes on Subgradients by Boyd et al. Below
we derive a property that will make our life easier for finding a subgradient of the
hinge loss.

1. Suppose f1, . . . , fm : Rd → R are convex functions, and f(x) = maxi=1,...,,m fi(x).
Let k be any index for which fk(x) = f(x), and choose g ∈ ∂fk(x) (a convex func-
tion on Rd has a non-empty subdifferential at all points). Show that g ∈ ∂f(x).

Since we have that g ∈ ∂fk(x), then by the definition of the subgradient we have,

fk(z) ≥ fk(x) + gT (z − x) (1)

Furthermore, since we have that fk(x) = f(x), it is obvious that,

f(z) ≥ fk(z) ≥ fk(x) + gT (z − x) = f(x) + gT (z − x) (2)

f(z) ≥ f(x) + gT (z − x) (3)

1

https://stanford.edu/class/ee364b/lectures/subgradients_notes.pdf

Which shows that g is a subgradient of f at x and therefore that g ∈ ∂f(x).

2. Give a subgradient of the hinge loss objective J(w) = max
{

0, 1− ywTx
}
.

The gradient of J(w) is well defined everywhere except when ywT = 1. In this case, we
can take either gradient since is will still result in a lower bounding function. So,

g =

{
−yx for ywTx < 1

0 for ywTx ≥ 1
(4)

Is a valid subgradient of the hinge loss objective.

You will train a Support Vector Machine using the Pegasos algorithm 1. Recall the
SVM objective using a linear predictor f(x) = wTx and the hinge loss:

min
w∈Rd

λ

2
‖w‖2 +

1

n

n∑
i=1

max
{

0, 1− yiwTxi
}
,

where n is the number of training examples and d the size of the dictionary. Note
that, for simplicity, we are leaving off the bias term b. Note also that we are using `2
regularization with a parameter λ. Pegasos is stochastic subgradient descent using
a step size rule ηt = 1/ (λt) for iteration number t. The pseudocode is given below:

Input: λ > 0. Choose w1 = 0, t = 0
While termination condition not met

For j = 1, . . . , n (assumes data is randomly permuted)
t = t+ 1
ηt = 1/ (tλ);
If yjw

T
t xj < 1

wt+1 = (1− ηtλ)wt + ηtyjxj
Else
wt+1 = (1− ηtλ)wt

3. Consider the SVM objective function for a single training point2: Ji(w) =
λ
2 ‖w‖

2+max
{

0, 1− yiwTxi
}
. The function Ji(w) is not differentiable everywhere.

Specify where the gradient of Ji(w) is not defined. Give an expression for the

1Shalev-Shwartz et al. Pegasos: Primal Estimated sub-Gradient Solver for SVM.
2Recall that if i is selected uniformly from the set {1, . . . , n}, then this objective function has the same expected

value as the full SVM objective function.

2

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

gradient where it is defined.

The gradient is not defined when yiw
Txi = 1. Otherwise, the gradient is given by,

∇wJi(w) =

{
λw − yixi for yiw

Txi < 1

λw for yiw
Txi > 1.

(5)

4. Show that a subgradient of Ji(w) is given by

gw =

{
λw − yixi for yiw

Txi < 1

λw for yiw
Txi ≥ 1.

You may use the following facts without proof: 1) If f1, . . . , fn : Rd → R are
convex functions and f = f1 + · · ·+ fn, then ∂f(x) = ∂f1(x) + · · ·+ ∂fn(x). 2) For
α ≥ 0, ∂ (αf) (x) = α∂f(x). (Hint: Use the first part of this problem.)

We have that,

Ji(w) = fλ(w) + fJ(w) =
λ

2
‖w‖2 + max

{
0, 1− yiwTxi

}
(6)

Where we are using fJ(w) to represent the hinge loss objective employed previously. Then
we have that ∂Ji(w) = ∂fλ(w) + ∂fJ(w) since fλ(w) and fJ(w) are both convex. Fur-
thermore, fλ(w) is differentiable everywhere, and,

∇wfλ(w) = λw (7)

We then simply add the subgradient achieved for fJ(w) and find that,

gw =

{
λw − yixi for yiw

Txi < 1

λw for yiw
Txi ≥ 1.

Is a valid subgradient of Ji(w).

3

We will be using the Polarity Dataset v2.0, constructed by Pang and Lee, provided
in the data reviews folder. It has the full text from 2000 movies reviews: 1000 re-
views are classified as positive and 1000 as negative. Our goal is to predict whether
a review has positive or negative sentiment from the text of the review. Each review
is stored in a separate file: the positive reviews are in a folder called “pos”, and the
negative reviews are in “neg”. We have provided some code in utils svm reviews.py

to assist with reading these files. The code removes some special symbols from the
reviews and shuffles the data. Load all the data to have an idea of what it looks like.

A usual method to represent text documents in machine learning is with bag-of-
words. As hinted above, here every possible word in the dictionnary is a feature,
and the value of a word feature for a given text is the number of times that word
appears in the text. As most words will not appear in any particular document,
many of these counts will be zero. Rather than storing many zeros, we use a sparse
representation, in which only the nonzero counts are tracked. The counts are stored
in a key/value data structure, such as a dictionary in Python. For example, “Harry
Potter and Harry Potter II” would be represented as the following Python dict:
x={’Harry’:2, ’Potter’:2, ’and’:1, ’II’:1}.

5. Write a function that converts an example (a list of words) into a sparse bag-
of-words representation. You may find Python’s Counter3 class to be useful
here. Note that a Counter is itself a dictionary.

The following function was created to produce sparse bag-of-words representations,

def count_vect(list_of_words):

vect = collections.Counter(list_of_words)

return(vect)

6. Load all the data and split it into 1500 training examples and 500 validation
examples. Format the training data as a list X train of dictionaries and y train

as the list of corresponding 1 or -1 labels. Format the test set similarly.

We defined this following function specifically to create the training and testing data,

def train_test_split(data):

all_x = []

all_y = []

for d in data:

words = d[:-1]

yi = d[-1]

xi = count_vect(words)

3https://docs.python.org/2/library/collections.html

4

https://www.cs.cornell.edu/people/pabo/movie-review-data/
https://docs.python.org/2/library/collections.html

all_x.append(xi)

all_y.append(yi)

X_train = all_x[:1500]

y_train = all_y[:1500]

X_test = all_x[1500:]

y_test = all_y[1500:]

return(X_train, y_train, X_test, y_test)

We will be using linear classifiers of the form f(x) = wTx, and we can store
the w vector in a sparse format as well, such as w={’minimal’:1.3, ’Harry’:-1.1,

’viable’:-4.2, ’and’:2.2, ’product’:9.1}. The inner product between w and x
would only involve the features that appear in both x and w, since whatever doesn’t
appear is assumed to be zero. For this example, the inner product would be
x(Harry) * w(Harry) + x(and) * w(and) = 2*(-1.1) + 1*(2.2). To help you along,
utils svm reviews.py includes two functions for working with sparse vectors: 1) a
dot product between two vectors represented as dictionaries and 2) a function that
increments one sparse vector by a scaled multiple of another vector, which is a very
common operation. It is worth reading the code, even if you intend to implement
it yourself. You may get some ideas on how to make things faster.

7. Implement the Pegasos algorithm to run on a sparse data representation. The
output should be a sparse weight vector w represented as a dictionary. Note
that our Pegasos algorithm starts at w = 0, which corresponds to an empty
dictionary. Note: With this problem, you will need to take some care to code
things efficiently. In particular, be aware that making copies of the weight
dictionary can slow down your code significantly. If you want to make a copy
of your weights (e.g. for checking for convergence), make sure you don’t do
this more than once per epoch. Also: If you normalize your data in some way,
be sure not to destroy the sparsity of your data. Anything that starts as 0
should stay at 0.

Below is our first implementation of the Pegasos algorithm,

def pegasos(X, y, lambd, epochs = 1):

w = {}

t = 1

for e in range(epochs):

for i in range(len(X)):

t += 1

n = 1/(t*lambd)

xi = X[i]

yi = y[i]

if yi*dotProduct(w, xi) < 1:

increment(w, -1*n*lambd, w)

increment(w, n*yi, xi)

5

else:

increment(w, -1*n*lambd, w)

return(w)

Note that in every step of the Pegasos algorithm, we rescale every entry of wt by
the factor (1 − ηtλ). Implementing this directly with dictionaries is very slow. We
can make things significantly faster by representing w as w = sW , where s ∈ R and
W ∈ Rd. You can start with s = 1 and W all zeros (i.e. an empty dictionary). Note
that both updates (i.e. whether or not we have a margin error) start with rescaling
wt, which we can do simply by setting st+1 = (1− ηtλ) st.

8. If the update is wt+1 = (1− ηtλ)wt + ηtyjxj, then verify that the Pegasos update
step is equivalent to:

st+1 = (1− ηtλ) st

Wt+1 = Wt +
1

st+1
ηtyjxj .

Implement the Pegasos algorithm with the (s,W) representation described
above. 4

First we show that the new update method is equivalent to the original method. We begin
by using the fact that wt+1 = st+1Wt+1,

Wt+1 = Wt +
1

st+1
ηtyjxj (8)

wt+1

st+1
=
wt
st

+
1

st+1
ηtyjxj (9)

Now we multiply the equation by st+1,

wt+1 = wt
st+1

st
+ ηtyjxj (10)

Then, substituting in st+1 = (1− ηtλ) st yields,

4There is one subtle issue with the approach described above: if we ever have 1− ηtλ = 0, then st+1 = 0, and
we’ll have a divide by 0 in the calculation for Wt+1. This only happens when ηt = 1/λ. With our step-size rule
of ηt = 1/ (λt), it happens exactly when t = 1. So one approach is to just start at t = 2. More generically, note
that if st+1 = 0, then wt+1 = 0. Thus an equivalent representation is st+1 = 1 and W = 0. Thus if we ever get
st+1 = 0, simply set it back to 1 and reset Wt+1 to zero, which is an empty dictionary in a sparse representation.

6

wt+1 = wt
(1− ηtλ) st

st
+ ηtyjxj (11)

wt+1 = wt (1− ηtλ) + ηtyjxj (12)

Which is the desired equivalency.

The following is the implementation of the Pegasos algorithm with the (s,W) representa-
tion,

def pegasos_scale(X, y, lambd, epochs = 1):

W = {}

t = 1

s = 1

for e in range(epochs):

for i in range(len(X)):

t += 1

n = 1/(t*lambd)

xi = X[i]

yi = y[i]

if s*yi*dotProduct(W, xi) < 1:

s = (1 - n*lambd)*s

increment(W, n*yi/s, xi)

else:

s = (1 - n*lambd)*s

w = {}

increment(w, s, W)

return(s,W,w)

9. Run both implementations of Pegasos on the training data for a couple epochs.
Make sure your implementations are correct by verifying that the two ap-
proaches give essentially the same result. Report on the time taken to run
each approach.

The following code runs both implementations of the Pegasos algorithm and times each,

from timeit import default_timer as timer

start = timer()

weights = pegasos(X_train, y_train, 0.3,2)

7

middle = timer()

s, W, w = pegasos_scale(X_train, y_train, 0.3,2)

end = timer()

print('Pegasos Time, 2 Epochs: ', middle-start)

print('Pegasos Scaled Time, 2 Epochs: ', end-middle)

The following result is the elapsed time for each algorithm, in seconds,

Pegasos Time, 2 Epochs: 18.116645700000007

Pegasos Scaled Time, 2 Epochs: 0.3862086999999974

It was also confirmed that both algorithms gave the same result by examining the resulting
weight vectors.

10. Write a function classification error that takes a sparse weight vector w, a
list of sparse vectors X and the corresponding list of labels y, and returns the
fraction of errors when predicting yi using sign(wTxi). In other words, the
function reports the 0-1 loss of the linear predictor f(x) = wTx.

The following function reports the classification error given a weight vector and a test set,

def classification_error(w, X, y):

error = 0

for i in range(len(X)):

xi = X[i]

yi = y[i]

result = dotProduct(w, xi)

if result > 0:

pred = 1

else:

pred = -1

if pred != yi:

error += 1

return(error/len(X))

11. Search for the regularization parameter that gives the minimal percent error
on your test set. You should now use your faster Pegasos implementation, and
run it to convergence. A good search strategy is to start with a set of regu-
larization parameters spanning a broad range of orders of magnitude. Then,

8

continue to zoom in until you’re convinced that additional search will not sig-
nificantly improve your test performance. Plot the test errors you obtained as
a function of the parameters λ you tested. (Hint: the error you get with the
best regularization should be closer to 15% than 20%. If not, maybe you did
not train to convergence.)

The following code was used to determine classification error as a function of λ,

errs = []

ls = np.arange(0.00001,0.1,0.0001)

for lambd in ls:

s,W,w = pegasos_scale(X_train, y_train, lambd,10)

err = classification_error(w, X_test, y_test)

errs.append(err)

We found that the best selection of parameter led to λ = 0.001 with a classification error
of 0.16. Observe the following plot of classification error as a function of λ,

9

Though λ oscillates quite frequently, it is clear that the classification error generally in-
creases as λ increases. Furthermore, using a λ below λ = 0.01 also leads to an increase in
classification error.

Recall that the score is the value of the prediction f(x) = wTx. We like to think
that the magnitude of the score represents the confidence of the prediction. This is
something we can directly verify or refute.

12. Break the predictions on the test set into groups based on the score (you
can play with the size of the groups to get a result you think is informative).
For each group, examine the percentage error. You can make a table or graph.
Summarize the results. Is there a correlation between higher magnitude scores
and accuracy?

The following function was created to divide the test set scores into equal groups, and then
report the classification error on each group individually. The output contains the average
score per group, alongside of the groups respective classification error,

def classification_error_grouped(w, X, y,group_size):

results = []

for i in range(len(X)):

xi = X[i]

yi = y[i]

result = dotProduct(w, xi)

results.append(result)

product_sorted, y_sorted = zip(*sorted(zip(results, y)))

grouped = np.array_split(product_sorted, group_size)

group_y = np.array_split(y_sorted, group_size)

all_errs = []

for e in range(len(grouped)):

error = 0

group = grouped[e]

gy = group_y[e]

for r in range(len(group)):

if group[r] > 0:

pred = 1

else:

pred = -1

if pred != gy[r]:

error += 1

all_errs.append(error/len(group))

return([np.mean(g) for g in grouped],all_errs)

10

The following plot shows the result of using 20 groups with an equal number of test scores.
The group’s score was averaged, and paired with the respective classification error,

It is easy to see that scores which lie close to the decision boundary (score=0) have a much
higher classification error than those which lie further away from the decision boundary.
Therefore, the larger the magnitude of the score, the stronger our confidence in the pre-
diction.

In natural language processing one can often interpret why a model has performed
well or poorly on a specific example. The first step in this process is to look closely
at the errors that the model makes.

13. (Optional) Choose an input example x = (x1, . . . , xd) ∈ Rd that the model got
wrong. We want to investigate what features contributed to this incorrect
prediction. One way to rank the importance of the features to the decision
is to sort them by the size of their contributions to the score. That is, for
each feature we compute |wixi|, where wi is the weight of the ith feature in
the prediction function, and xi is the value of the ith feature in the input x.
Create a table of the most important features, sorted by |wixi|, including the
feature name, the feature value xi, the feature weight wi, and the product wixi.
Attempt to explain why the model was incorrect. Can you think of a new
feature that might be able to fix the issue? Include a short analysis for at

11

least 2 incorrect examples. Can you think of new features that might help fix
a problem? (Think of making groups of words.)

Two functions were created to assist with this problem. The first, given here, identifies the
incorrectly classified examples within a test set,

def misclassified(w, X, y):

wrong = []

for i in range(len(X)):

xi = X[i]

yi = y[i]

result = dotProduct(w, xi)

if result > 0:

pred = 1

else:

pred = -1

if pred != yi:

wrong.append((xi,yi))

return(wrong)

The next function takes an individual input example, and produces the contribution to the
score from each feature,

def feature_scores(xi, w):

features = xi.keys()

feature_weights = {}

for f in features:

temp = {}

temp[f] = xi[f]

feature_weights[f] = dotProduct(w, temp)

return(feature_weights)

By use of these two functions, we produced two tables, one regarding a false positive ex-
ample and one regarding a false negative example. For each example, we reported the 15
most significant features by contribution and sign, given here,

12

There are likely many different reasons why our model incorrectly predicted these two
examples. Firstly, notice that the false positive is heavily influenced by ‘and ’. Here is a
classic example of where we should apply domain knowledge, recognizing that conjunctions
and other less descriptive (and more functionally oriented) words should be removed or
down-weighted within our classifier (other examples include ‘is’, ‘the’, and ‘by ’). Some of
these words could be filtered out during pre-processing.

Another failure of our classifier is the inability to recognize negations of speech. By using
only singular words as features, we are unable to capture expressions such as ‘not good ’
and ‘not bad ’. Examining example one, which is falsely labeled positive, it’s likely that
the feature ‘great ’ is proceeded by a negation. We find a similar problem in example two,
with ‘bad ’ and ‘not bad ’. We could employ n-grams, which allows for features that are
longer than simply one word. This would allow us to capture not only the use of negative
language, but also more linguistic meaning within the text itself.

Consider the following optimization problem on a data set (x1, y1) , . . . (xn, yn) ∈ Rd×Y:

min
w∈Rd

R
(√
〈w,w〉

)
+ L (〈w,x1〉 , . . . , 〈w,xn〉) ,

13

where w,x1, . . . ,xn ∈ Rd, and 〈·, ·〉 is the standard inner product on Rd. The function
R : [0,∞)→ R is nondecreasing and gives us our regularization term, while L : Rn → R
is arbitrary5 and gives us our loss term. We noted in lecture that this general form
includes soft-margin SVM and ridge regression, though not lasso regression. Using
the representer theorem, we showed if the optimization problem has a solution,
there is always a solution of the form w =

∑n
i=1αixi, for some α ∈ Rn. Plugging

this into the our original problem, we get the following “kernelized” optimization
problem:

min
α∈Rn

R
(√
αTKα

)
+ L (Kα) ,

where K ∈ Rn×n is the Gram matrix (or “kernel matrix”) defined by Kij = k(xi,xj) =
〈xi,xj〉.Predictions are given by

f(x) =

n∑
i=1

αik(xi,x),

and we can recover the original w ∈ Rd by w =
∑n
i=1 αixi.

The kernel trick is to swap out occurrences of the kernel k (and the corresponding
Gram matrix K) with another kernel. For example, we could replace k(xi, xj) =
〈xi, xj〉 by k′(xi, xj) = 〈ψ(xi), ψ(xj)〉 for an arbitrary feature mapping ψ : Rd → RD. In
this case, the recovered w ∈ RD would be w =

∑n
i=1 αiψ(xi) and predictions would

be 〈w,ψ(xi)〉.

More interestingly, we can replace k by another kernel k′′(xi,xj) for which we do
not even know or cannot explicitly write down a corresponding feature map ψ. Our
main example of this is the RBF kernel

k(x, x′) = exp

(
−‖x− x

′‖2

2σ2

)
,

for which the corresponding feature map ψ is infinite dimensional. In this case, we
cannot recover w since it would be infinite dimensional. Predictions must be done
using α ∈ Rn, with f(x) =

∑n
i=1 αik(xi,x).

Your implementation of kernelized methods below should not make any reference
to w or to a feature map ψ. Your learning routine should return α, rather than w,
and your prediction function should also use α rather than w. This will allow us to
work with kernels that correspond to infinite-dimensional feature vectors.

5You may be wondering “Where are the yi’s?”. They’re built into the function L. For example, a square loss

on a training set of size 3 could be represented as L(s1, s2, s3) =
1
3

[
(s1 − y1)2 + (s2 − y2)2 + (s3 − y3)3

]
, where

each si stands for the ith prediction 〈w,xi〉.

14

Suppose our input space is X=Rd and our output space is Y = R. Let D =
{(x1, y1) , . . . , (xn, yn)} be a training set from X × Y. We’ll use the “design matrix”
X ∈ Rn×d, which has the input vectors as rows:

X =

−x1−
...

−xn−

 .

Recall the ridge regression objective function:

J(w) = ||Xw − y||2 + λ||w||2,

for λ > 0.

14. Show that for w to be a minimizer of J(w), we must have XTXw+ λIw = XT y.
Show that the minimizer of J(w) is w = (XTX + λI)−1XT y. Justify that the
matrix XTX +λI is invertible, for λ > 0. (You should use properties of positive
(semi)definite matrices. If you need a reminder look up the Appendix.)

We find the gradient as follows,

∇J(w) = ∇(Xw − y)T (Xw − y) + λwTw

= 2XT · (Xw − y) + 2λw
(13)

Then setting the gradient equal to zero allows us to achieve the minimizer. So,

2XTXw − 2XT y + 2λw = 0 (14)

XTXw + λw = XT y (15)

Which is the desired result. Then, if we assume that XTX + λI is invertible, we would
have the following,

(XTX + λI)w = XT y (16)

w = (XTX + λI)−1XT y (17)

15

Now, we must show that XTX + λI is invertible. We know that postive definite matrices
are always invertible. So, if we show that XTX + λI is positive definite, then this suffices
to show that it is invertible. A real, symmetric matrix M ∈ Rn×n is positive definite if for
any x ∈ Rn with x 6= 0,

xTMx > 0.

Therefore, we show that,

xT (XTX + λI)x > 0 (18)

xTXTXx+ xTλIx > 0 (19)

(Xx)TXx+ λxTx > 0 (20)

||Xx||+ λ||x|| > 0 (21)

Where the last expression is trivially true since ||Xx|| is non-negative (magnitudes cannot
be negative) and λ||x|| is strictly positive since λ > 0 and x 6= 0. Therefore XTX + λI is
postive definite and invertible.

15. Rewrite XTXw + λIw = XT y as w = 1
λ (XT y −XTXw). Based on this, show that

we can write w = XTα for some α, and give an expression for α.

Beginning with the provided expression we have,

XTXw + λIw = XT y (22)

λIw = XT y −XTXw (23)

w =
1

λ
(XT y −XTXw) (24)

Then we simply factor out XT and distribute λ to achieve,

w = XT

(
y

λ
− Xw

λ

)
(25)

So we have that,

16

α =
y

λ
− Xw

λ
(26)

Where we could even replace w with our previous solution such that α = f(X, y, λ).

16. Based on the fact that w = XTα, explain why we say w is “in the span of the
data.”

Given that,

X =

−x1−
...

−xn−

 =⇒ XT =

 | |
x1 · · · xn
| |

 (27)

We have that,

w = XTα =

 | |
x1 · · · xn
| |

α1

...
αn

 = α1x1 + ...+ αnxn (28)

To be “in the span of the data” would imply that w is a linear combination of the data
vectors x1, ...,xn. This is exactly what w = α1x1 + ...+ αnxn means.

17. Show that α = (λI + XXT)−1y. Note that XXT is the kernel matrix for the
standard vector dot product. (Hint: Replace w by XTα in the expression for
α, and then solve for α.)

Given that,

α =
y

λ
− Xw

λ
(29)

We can replace w with XTα, yielding,

17

α =
y

λ
− XXTα

λ
(30)

λα+XXTα = y (31)

(λI +XXT)α = y (32)

α = (λI +XXT)−1y (33)

This is the desired expression for α.

18. Give a kernelized expression for the Xw, the predicted values on the training
points. (Hint: Replace w by XTα and α by its expression in terms of the kernel
matrix XXT .)

We have that,

Xw = XXTα

= XXT (λI +XXT)−1y
(34)

Which is the expression for α in terms of the kernel matrix XXT .

19. Give an expression for the prediction f(x) = xTw∗ for a new point x, not in
the training set. The expression should only involve x via inner products with
other x’s. (Hint: It is often convenient to define the column vector

kx =

x
Tx1

...
xTxn

to simplify the expression.)

The prediction of a new point x would simply be given by,

f̂(x) = kTxα
∗ (35)

18

There are many different families of kernels. So far we spoken about linear kernels,
RBF/Gaussian kernels, and polynomial kernels. The last two kernel types have
parameters. In this section, we’ll implement these kernels in a way that will be
convenient for implementing our kernelized ridge regression later on. For simplicity,
we will assume that our input space is X = R . This allows us to represent a collection
of n inputs in a matrix X ∈ Rn×1. You should now refer to the jupyter notebook
skeleton code kernels.ipynb.

20. Write functions that compute the RBF kernel kRBF(σ)(x, x
′) = exp

(
−‖x− x′‖2/

(
2σ2
))

and the polynomial kernel kpoly(a,d)(x, x
′) = (a+ 〈x, x′〉)d. The linear kernel

klinear(x, x
′) = 〈x, x′〉, has been done for you in the support code. Your func-

tions should take as input two matrices W ∈ Rn1×d and X ∈ Rn2×d and should
return a matrix M ∈ Rn1×n2 where Mij = k(Wi·, Xj·). In words, the (i, j)’th
entry of M should be kernel evaluation between wi (the ith row of W) and
xj (the jth row of X). For the RBF kernel, you may use the scipy function
cdist(X1,X2,’sqeuclidean’) in the package scipy.spatial.distance.

The following code is the completion of the Gaussian and polynomial kernel functions,

def RBF_kernel(X1,X2,sigma):

"""

Computes the RBF kernel between two sets of vectors

Args:

X1 - an n1xd matrix with vectors x1_1,...,x1_n1 in the rows

X2 - an n2xd matrix with vectors x2_1,...,x2_n2 in the rows

sigma - the bandwidth (i.e. standard deviation) for the RBF/Gaussian kernel

Returns:

matrix of size n1xn2, with exp(-||x1_i-x2_j||^2/(2 sigma^2)) in position i,j

"""

d = scipy.spatial.distance.cdist(X1, X2, 'sqeuclidean')

return(np.exp((-1*d)/(2*(sigma**2))))

def polynomial_kernel(X1, X2, offset, degree):

"""

Computes the inhomogeneous polynomial kernel between two sets of vectors

Args:

X1 - an n1xd matrix with vectors x1_1,...,x1_n1 in the rows

X2 - an n2xd matrix with vectors x2_1,...,x2_n2 in the rows

offset, degree - two parameters for the kernel

Returns:

matrix of size n1xn2, with (offset + <x1_i,x2_j>)^degree in position i,j

"""

return((offset + np.dot(X1,np.transpose(X2)))**degree)

19

21. Use the linear kernel function defined in the code to compute the kernel ma-
trix on the set of points x0 ∈ DX = {−4,−1, 0, 2}. Include both the code and the
output.

The following code returns the linear kernel matrix for DX ,

X1 = np.array([[-4,-1,0,2]]).T

X2 = X1

linear_kernel(X1, X2)

And we receive the following result,

array([[16, 4, 0, -8],

[4, 1, 0, -2],

[0, 0, 0, 0],

[-8, -2, 0, 4]])

22. Suppose we have the data set DX,y = {(−4, 2), (−1, 0), (0, 3), (2, 5)} (in each set of
parentheses, the first number is the value of xi and the second number the
corresponding value of the target yi). Then by the representer theorem, the
final prediction function will be in the span of the functions x 7→ k(x0, x) for
x0 ∈ DX = {−4,−1, 0, 2}. This set of functions will look quite different depending
on the kernel function we use. The set of functions x 7→ klinear(x0, x) for x0 ∈ DX
and for x ∈ [−6, 6] has been provided for the linear kernel.

(a) Plot the set of functions x 7→ kpoly(1,3)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

The following is the plot of the polynomial kernel concerning x0 ∈ DX = {−4,−1, 0, 2}
with degree 3 and offset 1,

20

(b) Plot the set of functions x 7→ kRBF(1)(x0, x) for x0 ∈ DX and for x ∈ [−6, 6].

The following is the plot of the RBF kernel concerning x0 ∈ DX = {−4,−1, 0, 2} with
a sigma of 1,

21

Note that the values of the parameters of the kernels you should use are given
in their definitions in (a) and (b).

23. By the representer theorem, the final prediction function will be of the form
f(x) =

∑n
i=1 αik(xi, x), where x1, . . . , xn ∈ X are the inputs in the training set. We

will use the class Kernel Machine in the skeleton code to make prediction with
different kernels. Complete the predict function of the class Kernel Machine.
Construct a Kernel Machine object with the RBF kernel (sigma=1), with proto-
type points at −1, 0, 1 and corresponding weights αi 1,−1, 1. Plot the resulting
function.

First, we provide the completed prediction function for our class,

def predict(self, X):

"""

Evaluates the kernel machine on the points given by the rows of X

Args:

X - an nxd matrix with inputs x_1,...,x_n in the rows

22

Returns:

Vector of kernel machine evaluations on the n points in X.

Specifically, jth entry of return vector is

Sum_{i=1}^R alpha_i k(x_j, mu_i)

"""

K0 = self.kernel(self.training_points,X)

return(K0.T @ self.weights)

Next, we create an instance of the class given our data and weights, and then create our
prediction function using the code below,

k = functools.partial(RBF_kernel, sigma=1)

ins = Kernel_Machine(k, np.array([[-1],[0],[1]]), np.array([[1],[-1],[1]]))

plot_step = .01

xpts = np.arange(-6.0, 6, plot_step).reshape(-1,1)

preds = ins.predict(xpts)

Finally, we receive the following plot of the prediction function, f(x),

Note: For this last problem, and for other problems below, it may be helpful to use
partial application on your kernel functions. For example, if your polynomial ker-
nel function has signature polynomial kernel(W, X, offset, degree), you can write

23

https://en.wikipedia.org/wiki/Partial_application

k = functools. partial(polynomial kernel, offset=2, degree=2), and then a call to
k(W,X) is equivalent to polynomial kernel(W, X, offset=2, degree=2), the advantage
being that the extra parameter settings are built into k(W,X). This can be convenient
so that you can have a function that just takes a kernel function k(W,X) and doesn’t
have to worry about the parameter settings for the kernel.

In the zip file for this assignment, we provide a training krr-train.txt and test set
krr-test.txt for a one-dimensional regression problem, in which X = Y = A = R.
Fitting this data using kernelized ridge regression, we will compare the results using
several different kernel functions. Because the input space is one-dimensional, we
can easily visualize the results.

24. Plot the training data. You should note that while there is a clear relationship
between x and y, the relationship is not linear.

As noted, below is the plot of the training data, which is clearly not linear,

25. In a previous problem, we showed that in kernelized ridge regression, the
final prediction function is f(x) =

∑n
i=1 αik(xi,x), where α = (λI + K)−1y and

24

K ∈ Rn×n is the kernel matrix of the training data: Kij = k(xi,xj), for x1, . . . ,xn.
In terms of kernel machines, αi is the weight on the kernel function evaluated
at the training point xi. Complete the function train kernel ridge regression

so that it performs kernel ridge regression and returns a Kernel Machine object
that can be used for predicting on new points.

Below is the desired function regarding kernel ridge regression,

def train_kernel_ridge_regression(X, y, kernel, l2reg):

K = kernel(X,X)

inv = np.linalg.inv(l2reg*np.identity(K.shape[0]) + K)

alpha = inv@y

return Kernel_Machine(kernel, X, alpha)

26. Use the code provided to plot your fits to the training data for the RBF kernel
with a fixed regularization parameter of 0.0001 for 3 different values of sigma:
0.01, 0.1, and 1.0. What values of sigma do you think would be more likely to
over fit, and which less?

Below is the plot fitting the training data using the RBF kernel at three different values of σ
and λ = 0.0001. It is clear that smaller values of σ are more likely to overfit, as the Gaussian
curves become smaller, hence placing more emphasis on each individual data point, rather
than the surrounding regions. Larger values of σ generate smoother distributions, with
less oscillations.

25

27. Use the code provided to plot your fits to the training data for the RBF kernel
with a fixed sigma of 0.02 and 4 different values of the regularization parameter
λ: 0.0001, 0.01, 0.1, and 2.0. What happens to the prediction function as λ→∞?

Below is our code for the RFB kernel with four different values of λ and σ = 0.02. If we
call our fit g(x), then it is clear that as λ→∞, g(x)→ 0. For example, if we preform a fit
using λ = 10000, we find that the resulting g(x) is essentially constant at 0. Using such a
large λ places an overbearing emphasis on making the resulting weights small, so they all
tend towards zero.

26

28. Find the best hyperparameter settings (including kernel parameters and the
regularization parameter) for each of the kernel types. Summarize your results
in a table, which gives training error and test error for each setting. Include in
your table the best settings for each kernel type, as well as nearby settings that
show that making small change in any one of the hyperparameters in either
direction will cause the performance to get worse. You should use average
square loss on the test set to rank the parameter settings. To make things
easier for you, we have provided an sklearn wrapper for the kernel ridge re-
gression function we have created so that you can use sklearn’s GridSearchCV.
Note: Because of the small dataset size, these models can be fit extremely fast,
so there is no excuse for not doing extensive hyperparameter tuning.

Below are our results from extensively training the hyperparameters using the test score
as our metric. We were able to obtain very small test scores. The best settings for each
kernel are given in boldface within the table below,

27

Kernel λ σ offset d Test Score Train Score
RBF 0.05 0.07 — — 0.01386 0.01432
RBF 0.06 0.07 — — 0.01384 0.01452
RBF 0.07 0.07 — — 0.01387 0.01473
RBF 0.06 0.06 — — 0.01451 0.01324
RBF 0.06 0.07 — — 0.01384 0.01452
RBF 0.06 0.08 — — 0.01514 0.01680

Polynomial 5.5 — 1.0 42 0.02216 0.02763
Polynomial 6.1 — 1.0 42 0.02215 0.02779
Polynomial 7.0 — 1.0 42 0.02216 0.02802
Polynomial 6.1 — 0.9 42 0.03902 0.04790

Polynomial 6.1 — 1.0 42 0.02215 0.02779
Polynomial 6.1 — 1.1 42 0.02465 0.04629
Polynomial 6.1 — 1.0 41 0.02228 0.02479

Polynomial 6.1 — 1.0 42 0.02215 0.02779
Polynomial 6.1 — 1.0 43 0.02216 0.04030

Linear 3 — — — 0.16451 0.20656
Linear 4 — — — 0.16451 0.20654
Linear 5 — — — 0.16451 0.20659

29. Plot your best fitting prediction functions using the polynomial kernel and the
RBF kernel. Use the domain x ∈ (−0.5, 1.5). Comment on the results.

The following plot shows the optimal fitting prediction functions concerning the polynomial
and RBF kernels. The RBF kernel appears to fit the training data more closely, though
carries higher complexity than the polynomial fit. However, the testing score associated
with the RBF kernel is about half of that associated with the polynomial kernel, which
seems to bear much less complexity.

28

30. The data for this problem was generated as follows: A function f : R→ R was
chosen. Then to generate a point (x, y), we sampled x uniformly from (0, 1)
and we sampled ε ∼ N

(
0, 0.12

)
(so Var(ε) = 0.12). The final point is (x, f(x) + ε).

What is the Bayes decision function and the Bayes risk for the loss function
` (ŷ, y) = (ŷ − y)

2
.

The Bayes decision function is a function, f∗ such that,

f∗ ∈ arg min
f̂

R(f̂) = arg min
f̂

E[`(f̂(x), y)] = arg min
f̂

E[(f̂(x)− y)2] (36)

So, we proceed by calculating the expected value and then minimizing it,

29

E[(f̂(x)− y)2] = E[(f̂(x)− f(x)− ε)2]

= E[f̂(x)2 + f(x)2 + ε2 − 2f̂(x)f(x) + 2f(x)ε− 2f̂(x)ε]

= E[f̂(x)2 + f(x)2] + E[ε2]− 2E[f̂(x)f(x)] + 2E[f(x)ε− f̂(x)ε]

= E[f̂(x)2 + f(x)2] + V ar(ε)− 2E[f̂(x)f(x)] + 2E[f(x)]E[ε]− 2E[f̂(x)]E[ε]

= E[f̂(x)2 + f(x)2]− 2E[f̂(x)f(x)] + V ar(ε)

(37)

Where the third line is by linearity of expectation, and the fourth line is by independence.
Now, we know that the loss function ` (ŷ, y) = (ŷ − y)

2
has a range of [0,∞). By inspection,

We have that f̂(x) = f(x) yields E[(f̂(x) − y)2] = V ar(ε). This is the lowest possible

expected loss since V ar(ε) is irreducible error, and so f̂(x) = f(x) is a valid Bayes decision
function. So, f∗(x) = f(x). The Bayes risk, which is simply the expected value of the loss
given on Bayes prediction function, has already been noted to be V ar(ε) = 0.01.

31. (Optional) Load the SVM training svm-train.txt and svm-test.txt test data
from the zip file. Plot the training data using the code supplied. Are the
data linearly separable? Quadratically separable? What if we used some RBF
kernel?

Below we have the plot of the training data for our classification problem,

30

We see immediately that the data is not linearly separable (we could not draw a line that
distinctly divides the two classes). On the other hand, the data is quadratically separable.
We see that the decision boundary could be roughly approximated as a circle with radius
2. Therefore we could approximate x21 + x22 < 2 as a sign of being marked as the −1
class. We could achieve this combination of features using a quadratic/polynomial kernel.
Similarly, we could use a RBF kernel, imagining a 3D Gaussian curve, intersecting our
plane in approximately circular cross-sections (one of which could be used as a decision
boundary).

32. (Optional) Unlike for kernel ridge regression, there is no closed-form solution
for SVM classification (kernelized or not). Implement kernelized Pegasos. Be-
cause we are not using a sparse representation for this data, you will probably
not see much gain by implementing the “optimized” versions described in the
problems above.

Below we implemented the kernelized Pegasos, a version of soft SVM,

def train_soft_svm(X, y, kernel, lambd, epochs):

31

K = kernel(X,X)

alpha = np.zeros(K.shape[0]).reshape(-1,1)

t=1

for ep in range(epochs):

for i in range(len(X)):

ay = np.multiply(alpha,y)

if y[i]*(1/(lambd*t))*(K[i,:]@ay) < 1:

alpha[i]+=1

t+=1

return Kernel_Machine(kernel, X, np.multiply(alpha,y))

33. (Optional) Find the best hyperparameter settings (including kernel parame-
ters and the regularization parameter) for each of the kernel types. Summarize
your results in a table, which gives training error and test error (i.e. average
0/1 loss) for each setting. Include in your table the best settings for each ker-
nel type, as well as nearby settings that show that making small change in any
one of the hyperparameters in either direction will cause the performance to
get worse. You should use the 0/1 loss on the test set to rank the parameter
settings.

First, we wrote a function to calculate the classification error (0-1 loss) on on the testing
data,

def classification_error(ybar,ytest):

y1 = ybar.flatten()

y2 = ytest.flatten()

err = 0

for i in range(len(y1)):

if y1[i]*y2[i] < 0:

err += 1

return(err/len(y1))

Then, we hyper-parameter tested each kernel by looping over the following code:

k = functools.partial(----_kernel, -----)

f = train_soft_svm(x_train, y_train, k, lambd,15)

y_bar = f.predict(x_test)

print(classification_error(y_bar,y_test))

Where the dashes have been left where kernel and hyper-parameter selection are needed.
The following results help to show that we selected the proper parameters,

32

Kernel λ σ offset d Classification Error
Linear 0.28 — — — 0.4938
Linear 0.30 — — — 0.4913
Linear 0.32 — — — 0.4925
RBF 0.007 0.4 — — 0.0425
RBF 0.007 0.5 — — 0.0388
RBF 0.007 0.6 — — 0.0438
RBF 0.006 0.5 — — 0.0400
RBF 0.007 0.5 — — 0.0388
RBF 0.008 0.5 — — 0.0413

Polynomial 0.01 — 5.9 2 0.0600
Polynomial 0.02 — 5.9 2 0.0475
Polynomial 0.03 — 5.9 2 0.1025
Polynomial 0.02 — 5.8 2 0.0600

Polynomial 0.02 — 5.9 2 0.0475
Polynomial 0.02 — 6.0 2 0.0725
Polynomial 0.02 — 5.9 3 0.0500

So, we found that the optimal settings for each kernel are: Linear: λ = 0.30; RFB:
λ = 0.007, σ = 0.50; Polynomial: λ = 0.20, offset = 5.9, degree = 2.

34. (Optional) Plot your best fitting prediction functions using the linear, polyno-
mial, and the RBF kernel. The code provided may help.

Using the provided code, we plotted the best prediction functions given the three types of
kernels. Each kernel has two associated plots. The first shows the contours of the kernel,
which is useful in understanding each kernel’s shape. The second shows specifically the
decision boundary. First, we observe the RBF kernel, which was optimal at σ = 0.50 and
λ = 0.007.

33

Next is the polynomial kernel, which was optimal when d = 2, offset = 5.9, and λ = 0.02,

And finally, the linear kernel, which is optimal when λ = 0.30

34

35

