
DS-GA 1003 - Homework 4

Eric Niblock

March 20, 2021

Consider a binary classification setting with input space X = Rd, outcome space
Y± = {−1, 1}, and a dataset D =

(
(x(1), y(1)), · · · , (x(n), y(n))

)
.

In the lecture we derived logistic regression using the Bernoulli response distribu-
tion. In this problem you will show that it is equivalent to ERM with logistic loss.

Consider a linear scoring function in the space Fscore =
{
x 7→ xTw | w ∈ Rd

}
. A simple

way to make predictions (similar to what we’ve seen with the perceptron algorithm)
is to predict ŷ = 1 if xTw > 0, or ŷ = sign(xTw). Accordingly, we consider margin-
based loss functions that relate the loss with the margin, yxTw. A positive margin
means that xTw has the same sign as y, i.e. a correct prediction. Specifically,
let’s consider the logistic loss function `logistic(y, w) = log

(
1 + exp(−ywTx)

)
. This is a

margin-based loss function that you have now encountered several times. Given the
logistic loss, we can now minimize the empirical risk on our dataset D to obtain an
estimate of the parameters, ŵ.

As discussed in the lecture, given that p(y = 1 | x;w) = 1/(1 + exp(−xTw)), we can
estimate w by maximizing the likelihood, or equivalently, minimizing the negative
log-likelihood (NLLD(w) in short) of the data.

1. Show that the two approaches are equivalent, i.e. they will produce the same
solution for w.

We have that,

L(D;w) =

n∏
i=1

(
1

1 + exp(−yixTi w)

)
(1)

First we show it must be the case that,

ŵ = argmax
w∈Rd

L(D;w) = argmax
w∈Rd

log(L(D;w)) (2)

1

We know that x→ log(x) is a strictly increasing function. Let it be the case that,

a∗ = argmax
w∈Rd

L(D;w) b∗ = argmax
w∈Rd

log(L(D;w)) (3)

Now, assume that a∗ 6= b∗. If this is the case, then L(D; a∗) > L(D; b∗), which follows
from the definition of a∗. Furthermore, since x → log(x) is a strictly increasing function,
it follows that log(L(D; a∗)) > log(L(D; b∗)). However, given the definition of b∗, we have
that log(L(D; a∗)) < log(L(D; b∗)). Contradiction. Therefore it must be the case that
a∗ = b∗.

Now, we have that,

log(L(D;w)) =

n∑
i=1

log

(
1

1 + exp(−yixTi w)

)

= −
n∑
i=1

log
(
1 + exp(−yixTi w)

) (4)

Maximizing a function f(x) is the same as minimizing the function −f(x), provided that
f(x) is concave (shown in Problem 4). Negating the above function yields,

−log(L(D;w)) =

n∑
i=1

log
(
1 + exp(−yixTi w)

)
(5)

Which you will notice as simply the sum of `logistic(y, w). Thus we have shown that,

ŵ = argmax
w∈Rd

L(D;w) = argmax
w∈Rd

log(L(D;w)) = argmin
w∈Rd

− log(L(D;w)) (6)

In this problem, we will investigate the behavior of MLE for logistic regression when
the data is linearly separable.

2

2. Show that the decision boundary of logistic regression is given by
{
x : xTw = 0

}
.

Note that the set will not change if we multiply the weights by some constant c.

We know that the decision boundary separates the classes given in the output space as
{−1, 1}. Therefore, a point lying exactly on the decision boundary should yield p(y = 1 |
x;w) = p(y = −1 | x;w) = 1

2 . Notice that for any
{
x : xTw = 0

}
we have,

p(y = 1 | xTw = 0) =
1

1 + e0
=

1

2
(7)

p(y = −1 | xTw = 0) = 1− 1

1 + e0
=

1

2
(8)

Which is as expected. Furthermore, notice that multiplying by a constant c does not affect
the decision boundary, since the exponent of e above would still be 0. Thus

{
x : xTw = 0

}
represents the decision boundary.

As further justification, take some ε > 0 and consider the following two cases. We have
that p(y = 1 | xTw = ε) ∈ (0.5, 1), and hence would be classified as the +1. Furthermore
p(y = 1 | xTw = −ε) ∈ (0, 0.5), and hence would be classified as −1. Thus xTw = 0
must represent the decision boundary, because small oscillations in either direction from
xTw = 0 lead to different classifications.

3. Suppose the data is linearly separable and by gradient descent/ascent we have
reached a decision boundary defined by ŵ where all examples are classified
correctly. Show that we can always increase the likelihood of the data by mul-
tiplying a scalar c on ŵ, which means that MLE is not well-defined in this case.
(Hint: You can show this by taking the derivative of L(cŵ) with respect to c,
where L is the likelihood function.)

We have the likelihood function given below,

L(D; cŵ) =

n∏
i=1

(
1

1 + exp(−yixTi cŵ)

)
(9)

Instead we consider maximizing the log-likelihood,

3

log(L(D; cŵ)) =

n∑
i=1

log

(
1

1 + exp(−yixTi cŵ)

)

= −
n∑
i=1

log
(
1 + exp(−yixTi cŵ)

) (10)

And,

∂log(L(D; cŵ))

∂c
=

n∑
i=1

yix
T
i ŵ exp(−yixTi cŵ)

1 + exp(−yixTi cŵ)
(11)

Since we have assumed that all of the data is classified correctly, we have that yix
T
i ŵ > 0 for

all i. Furthermore, exponential functions are always positive. Therefore the above partial
derivative with respect to c is always positive, and thus multiplying ŵ by a constant c > 1
increases the log-likelihood and therefore the likelihood.

As we’ve shown in above, when the data is linearly separable, MLE for logistic
regression may end up with weights with very large magnitudes. Such a function is
prone to overfitting. In this part, we will apply regularization to fix the problem.

The `2 regularized logistic regression objective function can be defined as

Jlogistic(w) = R̂n(w) + λ‖w‖2

=
1

n

n∑
i=1

log
(

1 + exp
(
−y(i)wTx(i)

))
+ λ‖w‖2.

4. Prove that the objective function Jlogistic(w) is convex. You may use any facts
mentioned in the convex optimization notes.

First we rewrite the objective function as follows,

Jlogistic(w) = R̂n(w) + λ‖w‖2 =

n∑
i=1

fi(d) + λ‖w‖2 (12)

Where d = −y(i)wTx(i) (so d ∈ IR) and,

4

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf

fi(d) = log (1 + exp (d)) (13)

Now, f : IR→ IR is convex if f has a second derivative greater than zero on all of IR. So,

dfi(d)

dd
=

ed

1 + ed
(14)

d2fi(d)

dd2
=

ed

1 + ed
−
(

ed

1 + ed

)2

(15)

It is trivial that the second derivative is always positive, and thus fi(d) is convex. Further-
more, the sum of convex functions is convex, and any norm on IRn is convex. Thus,

Jlogistic(w) = R̂n(w) + λ‖w‖2 =
1

n

n∑
i=1

log
(

1 + exp
(
−y(i)wTx(i)

))
+ λ‖w‖2 (16)

Is convex provided λ ≥ 0.

5. Complete the f objective function in the skeleton code, which computes the
objective function for Jlogistic(w). (Hint: you may get numerical overflow when
computing the exponential literally, e.g. try e1000 in Numpy. Make sure to
read about the log-sum-exp trick and use the numpy function logaddexp to
get accurate calculations and to prevent overflow.

The following function computes the objective function Jlogistic(w),

def f_objective(theta, X, y, l2_param=1):

'''

Args:

theta: 1D numpy array of size num_features

X: 2D numpy array of size (num_instances, num_features)

y: 1D numpy array of size num_instances

l2_param: regularization parameter

Returns:

objective: scalar value of objective function

5

https://blog.feedly.com/tricks-of-the-trade-logsumexp/
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html

'''

use = -1*np.multiply(X@theta,y)

obj = np.mean(np.logaddexp(0,use)) + l2_param*(np.linalg.norm(theta)**2)

return(obj)

6. Complete the fit logistic regression function in the skeleton code using the
minimize function from scipy.optimize. Use this function to train a model on
the provided data. Make sure to take the appropriate preprocessing steps,
such as standardizing the data and adding a column for the bias term.

First, we imported the data and standardized it using the following function. Every feature
was centered by subtracting the feature’s mean, and scaled by dividing by each feature’s
respective standard deviation. Furthermore we added a feature of all ones in order to add
a coefficient.

def standardize(X1, X2):

for i in range(X1.shape[1]):

X1[:,i] = X1[:,i] - np.mean(X1[:,i])

X1[:,i] = X1[:,i]/ np.std(X1[:,i])

X2[:,i] = X2[:,i] - np.mean(X1[:,i])

X2[:,i] = X2[:,i]/ np.std(X1[:,i])

b = np.ones((X1.shape[0],1))

X1 = np.hstack((X1,b))

b = np.ones((X2.shape[0],1))

X2 = np.hstack((X2,b))

return(X1,X2)

The following is our completed function which minimizes our objective function,

def fit_logistic_reg(X, y, objective_function, l2_param=1):

'''

Args:

X: 2D numpy array of size (num_instances, num_features)

y: 1D numpy array of size num_instances

objective_function: function returning the value of the objective

l2_param: regularization parameter

Returns:

optimal_theta: 1D numpy array of size num_features

'''

6

theta = np.zeros(X.shape[1])

mini = sco.minimize(objective_function, theta, args = (X,y,l2_param))

return(mini['x'])

We then trained the following model,

X_train = np.loadtxt('X_train_hw4.txt',delimiter=',')

y_train = np.loadtxt('y_train_hw4.txt',delimiter=',')

X_val = np.loadtxt('X_val_hw4.txt',delimiter=',')

y_val = np.loadtxt('y_val_hw4.txt',delimiter=',')

y_train[y_train==0] = -1

y_val[y_val==0] = -1

X_train, X_val = standardize(X_train, X_val)

sol = fit_logistic_reg(X_train, y_train, f_objective, l2_param=0.035)

We determined this configuration was optimal in the following question.

7. Find the `2 regularization parameter that maximizes the log-likelihood on the
validation set. Plot the log-likelihood for different values of the regularization
parameter.

The following code was used to find the hyper-parameter which maximized the log-likelihood
(or, equivalently, minimized the negative log-likelihood, which is shown here),

val_loss = []

for l2 in np.logspace(-5,-1,80):

sol = fit_logistic_reg(X_train, y_train, f_objective, l2_param=l2)

val_loss.append(f_objective_noreg(sol, X_val, y_val)) #No Reg Term

We then produced the following plot, with the minimum located at λ = 0.035,

7

8. [Optional] It seems reasonable to interpret the prediction f(x) = φ(wTx) =

1/(1 + e−w
T x) as the probability that y = 1, for a randomly drawn pair (x, y).

Since we only have a finite sample (and we are regularizing, which will bias
things a bit) there is a question of how well “calibrated” our predicted prob-
abilities are. Roughly speaking, we say f(x) is well calibrated if we look at
all examples (x, y) for which f(x) ≈ 0.7 and we find that close to 70% of those
examples have y = 1, as predicted... and then we repeat that for all predicted
probabilities in (0, 1). To see how well-calibrated our predicted probabilities
are, break the predictions on the validation set into groups based on the pre-
dicted probability (you can play with the size of the groups to get a result
you think is informative). For each group, examine the percentage of positive
labels. You can make a table or graph. Summarize the results. You may get
some ideas and references from scikit-learn’s discussion.

The following code was used to divide the predicted examples based on probability, and
then determine the percentage classified correctly by grouping,

def calibration(X, sol, y,group_size):

preds = 1/(1+np.exp(-1*X@sol))

preds_sorted, y_sorted = zip(*sorted(zip(preds, y)))

grouped = np.array_split(preds_sorted, group_size)

8

https://en.wikipedia.org/wiki/Calibration_(statistics)
http://scikit-learn.org/stable/modules/calibration.html

group_y = np.array_split(y_sorted, group_size)

all_acc = []

for e in range(len(grouped)):

acc = 0

group = grouped[e]

gy = group_y[e]

for r in range(len(group)):

if gy[r] == 1:

acc+=1

all_acc.append(acc/len(group))

return([np.mean(g) for g in grouped],all_acc)

The results then produced the following plot for λ = 0.035,

We note that the model appears roughly calibrated. Though the results do appear to follow
a roughly linear trend, further experimentation with different values of λ reveal that the
trend is actually more sigmoidal.

Let’s continue with logistic regression in the Bayesian setting, where we introduce
a prior p(w) on w ∈ Rd.

9

9. For the same dataset D described at the beginning of the Section, give an ex-
pression for the posterior density p(w | D) in terms of the negative log-likelihood
function NLLD(w) and the prior density p(w) (up to a proportionality constant
is fine).

By Bayes Theorem, we have that,

p(w | D) =
p(D | w)p(w)

p(D)
=

exp(−NLLD(w))p(w)

p(D)
(17)

Where p(D) represents a proportionality or normalization constant.

10. Suppose we take a prior on w of the form w ∼ N (0,Σ), that is in the Gaussian
family. Is this a conjugate prior to the likelihood given by logistic regression?

A closed form solution was attempted for this problem, though a counter-example was
instead provided. The following code was used to calculate the necessary Gaussian distri-
bution,

def gauss(w,sigma,u):

d = len(w)

det = 1/np.linalg.det(sigma)

f = (1/(2*np.pi))**(d/2)

m = w-u

e = np.exp(-1*m.T@np.linalg.inv(sigma)@m/2)

return(f*det*e)

We then used the following code to calculate the prior and posterior using random data
with µ = 0, Σ = I,

X = np.random.rand(20,1)

y = np.random.randint(2, size=20)

y[y==0] = -1

post = []

p = []

for w in np.linspace(-5,5,100):

g = gauss(np.array([w]),np.array([[1]]),np.array([0]))

p.append(g)

post.append(g*np.exp(len(X)*f_objective_noreg(np.array([w]), X, y)))

10

As you can see the posterior is obviously not Gaussian. This confirms that we could not
write the following expression,

p(w|D) ∝ e 1
2 (w−µ)T Σ−1(w−µ) (18)

And shows that the Gaussian family is not a conjugate prior to the likelihood given by
logistic regression.

11. Show that there exist a covariance matrix Σ such that MAP (maximum a pos-
teriori) estimate for w after observing data D is the same as the minimizer
of the regularized logistic regression function defined in Regularized Logistic
Regression paragraph above, and give its value. [Hint: Consider minimizing
the negative log posterior of w. Also, remember you can drop any terms from
the objective function that don’t depend on w. You may freely use results of
previous problems.]

11

We know that,

ŵ = argmin
w∈Rd

R̂n(w) + λ‖w‖2 (19)

Then we should also have that,

w∗ = argmax
w∈Rd

p(w | D)

= argmax
w∈Rd

exp(−NLLD(w))p(w)

= argmin
w∈Rd

− log[exp(−NLLD(w))p(w)]

= argmin
w∈Rd

NLLD(w)− log(p(w))

(20)

And since we know the prior is given by w ∼ N (0,Σ), and that NLLD(w) = nR̂n(w) we
see that,

w∗ = argmin
w∈Rd

NLLD(w) +
1

2
wTΣ−1w

= argmin
w∈Rd

R̂n(w) +
1

2n
wTΣ−1w

(21)

So, equating the two regularization terms yields,

1

2n
wTΣ−1w = λwTw (22)

wTΣ−1w = wT (2nλ)w (23)

Σ =
1

2nλ
I (24)

12. In the Bayesian approach, the prior should reflect your beliefs about the param-
eters before seeing the data and, in particular, should be independent on the
eventual size of your dataset. Imagine choosing a prior distribution w ∼ N (0, I).
For a dataset D of size n, how should you choose λ in our regularized logistic
regression objective function so that the ERM is equal to the mode of the
posterior distribution of w (i.e. is equal to the MAP estimator).

12

In order for the previously derived expression to hold for the given Σ = I, we must have,

I =
1

2nλ
I (25)

And therefore,

1

2nλ
= 1 (26)

λ =
1

2n
(27)

Consider flipping a biased coin where p(z = H | θ1) = θ1. However, we cannot directly
observe the result z. Instead, someone reports the result to us, which we denoted
by x. Further, there is a chance that the result is reported incorrectly if it’s a head.
Specifically, we have p(x = H | z = H, θ2) = θ2 and p(x = T | z = T) = 1.

13. Show that p(x = H | θ1, θ2) = θ1θ2.

The only way in which we are reported a head is when an actual head is flipped (with
probability p(z = H | θ1) = θ1) and when the report is transmitted factually (with proba-
bility p(x = H | z = H, θ2) = θ2). Thus,

p(x = H | θ1, θ2) = p(z = H | θ1)p(x = H | z = H, θ2) = θ1θ2 (28)

14. Given a set of reported results Dr of size Nr, where the number of heads is nh
and the number of tails is nt, what is the likelihood of Dr as a function of θ1

and θ2.

Since there are only two possible results from our sample space, we know that if p(x = H |
θ1, θ2) = θ1θ2 then p(x = T | θ1, θ2) = 1− θ1θ2. Therefore, the likelihood of Dr is given by,

L(Dr; θ1, θ2) = (θ1θ2)nh(1− θ1θ2)nt (29)

13

15. Can we estimate θ1 and θ2 using MLE? Explain your judgment.

We cannot estimate θ1 and θ2 using MLE (in a way that provides useful information).
Imagine instead we had a likelihood function with θ = θ1θ2, then we simply have,

L(Dr; θ) = θnh(1− θ)nt (30)

Where θMLE = nh

nh+nt
(simply the MLE for Bernoulli experiments). Thus, we also have,

θ1θ2 =
nh

nh + nt
(31)

Such an equation generally has infinite solutions, and thus we find no reliable information
about either θ1 or θ2. However, we can find (θ1θ2)MLE .

16. We additionally obtained a set of clean results Dc of size Nc, where x is directly
observed without the reporter in the middle. Given that there are ch heads
and ct tails, estimate θ1 and θ2 by MLE taking the two data sets into account.
Note that the likelihood is L(θ1, θ2) = p(Dr,Dc | θ1, θ2).

Assuming conditional independence we have that,

p(Dr,Dc | θ1, θ2) = p(Dr | θ1, θ2)p(Dc | θ1, θ2) (32)

So then we have,

L(θ1, θ2) = p(Dr | θ1, θ2)p(Dc | θ1, θ2)

= (θ1θ2)nh(1− θ1θ2)ntθch1 (1− θ1)ct
(33)

And furthermore,

14

log(L(θ1, θ2)) = nhlog(θ1) + nhlog(θ2) + ntlog(1− θ1θ2) + chlog(θ1) + ctlog(1− θ1) (34)

First, we find θ2,MLE as follows,

∂log(L(θ1, θ2))

∂θ2
=
nh
θ2
− ntθ1

1− θ1θ2
(35)

Which setting equal to zero and solving implies,

θ2,MLE =
nh

θ1,MLE(nh + nt)
(36)

Now we attempt to find θ1,MLE through the same method of differentiation, though we
replace all of the θ2 with θ2,MLE found above.

∂log(L(θ1, θ2))

∂θ1
=
nh
θ1
− ntθ2

1− θ1θ2
+
ch
θ1
− ct

1− θ1
(37)

Now we substitute the θ2,MLE and find after simplifying that,

θ1,MLE =
ch

ch + ct
(38)

And therefore,

θ2,MLE =
nh(ch + ct)

ch(nh + nt)
(39)

17. Since the clean results are expensive, we only have a small number of those
and we are worried that we may overfit the data. To mitigate overfitting we
can use a prior distribution on θ1 if available. Let’s imagine that an oracle gave
us the prior p(θ1) = Beta(h, t). Derive the MAP estimates for θ1 and θ2.

15

Assuming the prior given by the beta distribution, we have that,

p(θ1|Dc) =
p(Dc|θ1)p(θ)

p(Dc)
(40)

p(θ1|Dc) ∝ θch1 (1− θ1)ctθh−1
1 (1− θ1)t−1 (41)

p(θ1|Dc) ∝ θch+h−1
1 (1− θ1)ct+t−1 = Beta(ch + h, ct + t) (42)

Then we have that θ1,MAP is given by the mode of p(θ1|Dc). The mode of Beta(ch+h, ct+t)
is given by,

α− 1

α+ β − 1
=

ch + h− 1

ch + ct + h+ t− 2
(43)

So,

θ1,MAP =
ch + h− 1

ch + ct + h+ t− 2
(44)

Furthermore, we use the following result from above,

θ2,MLE =
nh

θ1(nh + nt)
(45)

Yielding,

θ2,MLE =
nh(ch + ct + h+ t− 2)

(ch + h− 1)(nh + nt)
(46)

Thus we have found θ1,MAP and θ2,MLE .

16

