
DS-GA 1003 - Homework 7

Eric Niblock

April 24, 2021

There is no doubt that neural networks are a very important class of machine learn-
ing models. Given the sheer number of people who are achieving impressive results
with neural networks, one might think that it’s relatively easy to get them working.
This is a partly an illusion. One reason so many people have success is that, thanks
to GitHub, they can copy the exact settings that others have used to achieve suc-
cess. In fact, in most cases they can start with “pre-trained” models that already
work for a similar problem, and “fine-tune” them for their own purposes. It’s far
easier to tweak and improve a working system than to get one working from scratch.
If you create a new model, you’re kind of on your own to figure out how to get it
working: there’s not much theory to guide you and the rules of thumb do not always
work. Understanding even the most basic questions, such as the preferred variant
of SGD to use for optimization, is still a very active area of research.

One thing is clear, however: If you do need to start from scratch, or debug a neural
network model that doesn’t seem to be learning, it can be immensely helpful to
understand the low-level details of how your neural network works – specifically,
back-propagation. With this assignment, you’ll have the opportunity to linger on
these low-level implementation details. Every major neural network type (RNNs,
CNNs, Resnets, etc.) can be implemented using the basic framework we’ll develop
in this assignment.

To help things along, Philipp Meerkamp, Pierre Garapon, and David Rosenberg
have designed a minimalist framework for computation graphs and put together
some support code. The intent is for you to read, or at least skim, every line of
code provided, so that you’ll know you understand all the crucial components and
could, in theory, create your own from scratch. In fact, creating your own compu-
tation graph framework from scratch is highly encouraged – you’ll learn a lot.

To get started, please read the tutorial on the computation graph framework we’ll be
working with. (Note that it renders better if you view it locally.) The use of compu-
tation graphs is not specific to machine learning or neural networks. Computation
graphs are just a way to represent a function that facilitates efficient computation
of the function’s values and its gradients with respect to inputs. The tutorial takes
this perspective, and there is very little in it about machine learning, per se.

To see how the framework can be used for machine learning tasks, we’ve provided
a full implementation of linear regression. You should start by working your way

1

https://github.com/davidrosenberg/mlcourse/blob/gh-pages/Notebooks/computation-graph/computation-graph-framework.ipynb

through the init of the LinearRegression class in linear regression.py. From
there, you’ll want to review the node class definitions in nodes.py, and finally the
class ComputationGraphFunction in graph.py. ComputationGraphFunction is where we
repackage a raw computation graph into something that’s more friendly to work
with for machine learning. The rest of linear regression.py is fairly routine, but it
illustrates how to interact with the ComputationGraphFunction.

As we’ve noted earlier in the course, getting gradient calculations correct can be
difficult. To help things along, we’ve provided two functions that can be used
to test the backward method of a node and the overall gradient calculation of
a ComputationGraphFunction. The functions are in test utils.py, and it’s recom-
mended that you review the tests provided for the linear regression implementa-
tion in linear regression.t.py. (You can run these tests from the command line
with python3 linear regression.t.py.) The functions actually doing the testing,
test node backward and test ComputationGraphFunction, may seem a bit intricate, but
they’re implementing the exact same gradient checker logic we saw in the second
homework assignment.

Once you’ve understood how linear regression works in our framework, you’re ready
to start implementing your own algorithms. To help you get started, please make
sure you are able to execute the following commands:

• cd /path/to/hw7

• python3 linear regression.py

• python3 linear regression.t.py

When moving to a new system, it’s always good to start with something familiar.
But that’s not the only reason we’re doing ridge regression in this homework. In
ridge regression the parameter vector is “shared”, in the sense that it’s used twice in
the objective function. In the computation graph, this can be seen in the fact that
the node for the parameter vector has two outgoing edges. This sharing is common
many popular neural networks (RNNs and CNNs), where it is often referred to as
parameter tying.

The ridge regression.py provides a skeleton code and ridge regression.t.py is a test
code, which you should eventually be able to pass.

1. Complete the class L2NormPenaltyNode in nodes.py. If your code is correct,
you should be able to pass test L2NormPenaltyNode in ridge regression.t.py.
Please attach a screenshot that shows the test results for this question.

The following code shows the completed `2 penalty node class,

2

class L2NormPenaltyNode(object):

""" Node computing l2_reg * ||w||^2 for scalars l2_reg and vector w"""

def __init__(self, l2_reg, w, node_name):

"""

Parameters:

l2_reg: a numpy scalar array (e.g. np.array(.01)) (not a node)

w: a node for which w.out is a numpy vector

node_name: node's name (a string)

"""

self.node_name = node_name

self.out = None

self.d_out = None

self.l2_reg = np.array(l2_reg)

self.w = w

def forward(self):

self.out = self.l2_reg*np.dot(self.w.out, self.w.out)

self.d_out = np.zeros(self.out.shape)

return(self.out)

def backward(self):

d_w = self.d_out*(2*self.l2_reg*self.w.out)

self.w.d_out += d_w

return(self.d_out)

def get_predecessors(self):

return [self.w]

The test results for this question are included at the conclusion of problem three.

2. Complete the class SumNode in nodes.py. If your code is correct, you should be
able to pass test SumNode in ridge regression.t.py. Please attach a screen-
shot that shows the test results for this question.

The following code shows the completed sum node class,

class SumNode(object):

""" Node computing a + b, for numpy arrays a and b"""

def __init__(self, a, b, node_name):

"""

Parameters:

a: node for which a.out is a numpy array

b: node for which b.out is a numpy array of the same shape as a

3

node_name: node's name (a string)

"""

self.node_name = node_name

self.out = None

self.d_out = None

self.b = b

self.a = a

def forward(self):

self.out = self.a.out + self.b.out

self.d_out = np.zeros(self.out.shape)

return(self.out)

def backward(self):

self.a.d_out += self.d_out

self.b.d_out += self.d_out

return(self.d_out)

def get_predecessors(self):

return [self.a, self.b]

The test results for this question are included at the conclusion of problem three.

3. Implement ridge regression with w regularized and b unregularized. Do this by
completing the init method in ridge regression.py, using the classes created
above. When complete, you should be able to pass the tests in ridge regression.t.py.
Report the average square error on the training set for the parameter settings
given in the main() function.

The following shows the completed initialization of our ridge regression class,

class RidgeRegression(BaseEstimator, RegressorMixin):

""" Ridge regression with computation graph """

def __init__(self, l2_reg=1, step_size=.005, max_num_epochs = 5000):

self.max_num_epochs = max_num_epochs

self.step_size = step_size

Build computation graph

self.x = nodes.ValueNode(node_name="x") # to hold a vector input

self.y = nodes.ValueNode(node_name="y") # to hold a scalar response

self.w = nodes.ValueNode(node_name="w") # to hold the parameter vector

self.b = nodes.ValueNode(node_name="b") # to hold the bias parameter (scalar)

self.prediction = nodes.VectorScalarAffineNode(x=self.x, w=self.w, b=self.b,

node_name="prediction")

Build computation graph

4

self.input = [self.x]

self.output = [self.y]

self.para = [self.w, self.b]

self.reg = nodes.SquaredL2DistanceNode(self.prediction, self.y, 'pred')

self.norm = nodes.L2NormPenaltyNode(l2_reg, self.w, 'l2')

self.obj = nodes.SumNode(self.reg, self.norm, 'square loss')

self.graph = graph.ComputationGraphFunction(self.input, self.output,\

self.para, self.prediction, self.obj)

The following is the result of testing the previous nodes, and was copied from the command
prompt. Additionally, we have included the plot produced from running ridge regression, as
well as the average training loss after training including and not including features (0.2000
and 0.0502, respectively).

(base) C:\Users\Eric>python ridge_regression.t.py

DEBUG: (Node l2 norm node) Max rel error for partial deriv w.r.t. w is 1.623094234596558e-08.

.DEBUG: (Node sum node) Max rel error for partial deriv w.r.t. a is 5.83867125804325e-10.

DEBUG: (Node sum node) Max rel error for partial deriv w.r.t. b is 5.83867125804325e-10.

.DEBUG: (Parameter w) Max rel error for partial deriv 2.0307927517078213e-09.

DEBUG: (Parameter b) Max rel error for partial deriv 8.80451932679026e-12.

.

--

Ran 3 tests in 0.002s

OK

5

Epoch 1950 : Ave objective= 0.30335120831936047 Ave training loss: 0.19997864262061507

Epoch 450 : Ave objective= 0.05029143498226959 Ave training loss: 0.05024912502112784

Let’s now turn to a multilayer perceptron (MLP) with a single hidden layer and a
square loss. We’ll implement the computation graph illustrated below:

6

The crucial new piece here is the nonlinear hidden layer, which is what makes the
multilayer perceptron a significantly larger hypothesis space than linear prediction
functions.

The multilayer perceptron consists of a sequence of “layers” implementing the fol-
lowing non-linear function

h(x) = σ (Wx+ b) ,

where x ∈ Rd, W ∈ Rm×d, and b ∈ Rm, and where m is often referred to as the number
of hidden units or hidden nodes. σ is some non-linear function, typically tanh or
ReLU, applied element-wise to the argument of σ. Referring to the computation
graph illustration above, we will implement this nonlinear layer with two nodes, one
implementing the affine transform L = W1x + b1, and the other implementing the
nonlinear function h = tanh(L). In this problem, we’ll work out how to implement
the backward method for each of these nodes.

In a general neural network, there may be quite a lot of computation between any
given affine transformation Wx+ b and the final objective function value J . We will
capture all of that in a function f : Rm → R, for which J = f(Wx+ b). Our goal is to
find the partial derivative of J with respect to each element of W , namely ∂J/∂Wij,
as well as the partials ∂J/∂bi, for each element of b. For convenience, let y = Wx+ b,
so we can write J = f(y). Suppose we have already computed the partial derivatives

of J with respect to the entries of y = (y1, . . . , ym)
T
, namely ∂J

∂yi
for i = 1, . . . ,m. Then

7

by the chain rule, we have

∂J

∂Wij
=

m∑
r=1

∂J

∂yr

∂yr
∂Wij

.

4. Show that ∂J
∂Wij

= ∂J
∂yi

xj, where x = (x1, . . . , xd)
T
. [Hint: Although not necessary,

you might find it helpful to use the notation δij =

{
1 i = j

0 else
. So, for examples,

∂xj

(∑n
i=1 x

2
i

)
= 2xiδij = 2xj.]

Rewriting y = Wx + b from vector notation yields yi = Wix + b where Wi represents
the i-th row of W . Therefore, it is clear that yr has no dependence on Wij unless r = i.
Therefore,

∂yr
∂Wij

=

{
xj i = r

0 i 6= j
(1)

Therefore, the sum collapses to the term that remains when i = r,

∂J

∂Wij
=
∂J

∂yi
xj (2)

5. Now let’s vectorize this. Let’s write ∂J
∂y ∈ Rm×1 for the column vector whose

ith entry is ∂J
∂yi

. Let’s also define the matrix ∂J
∂W ∈ Rm×d, whose ij’th entry is

∂J
∂Wij

. Generally speaking, we’ll always take ∂J
∂A to be an array of the same size

(“shape” in numpy) as A. Give a vectorized expression for ∂J
∂W in terms of the

column vectors ∂J
∂y and x. [Hint: Outer product.]

We have that,

∂J

∂W
=
∂J

∂y
xT (3)

Since we previously treated x as a Rd×1 column vector, we use xT . The resulting product
yields an Rm×d matrix as expected.

8

6. In the usual way, define ∂J
∂x ∈ Rd, whose i’th entry is ∂J

∂xi
. Show that

∂J

∂x
= WT

(
∂J

∂y

)
[Note, if x is just data, technically we won’t need this derivative. However,
in a multilayer perceptron, x may actually be the output of a previous hidden
layer, in which case we will need to propagate the derivative through x as well.]

It is clear that,

∂J

∂xi
=

m∑
j=1

∂J

∂yj

∂yj
∂xi

=

m∑
j=1

∂J

∂yj
Wj,i = (WT)i

(
∂J

∂y

)
(4)

And therefore this implies that,

∂J

∂x
= WT

(
∂J

∂y

)
(5)

7. Show that ∂J
∂b = ∂J

∂y , where ∂J
∂b is defined in the usual way.

By the chain rule,

∂J

∂b
=
∂J

∂y

∂y

∂b
=
∂J

∂y
Im =

∂J

∂y
(6)

And therefore,

∂J

∂b
=
∂J

∂y
(7)

9

Our nonlinear activation function nodes take an array (e.g. a vector, matrix, higher-
order tensor, etc), and apply the same nonlinear transformation σ : R→ R to every
element of the array. Let’s abuse notation a bit, as is usually done in this context,
and write σ(A) for the array that results from applying σ(·) to each element of A. If
σ is differentiable at x ∈ R, then we’ll write σ′(x) for the derivative of σ at x, with
σ′(A) defined analogously to σ(A).

Suppose the objective function value J is written as J = f(σ(A)), for some function
f : S 7→ R, where S is an array of the same dimensions as σ(A) and A. As before, we
want to find the array ∂J

∂A for any A. Suppose for some A we have already computed

the array ∂J
∂S = ∂f(S)

∂S for S = σ(A). At this point, we’ll want to use the chain rule

to figure out ∂J
∂A . However, because we’re dealing with arrays of arbitrary shapes,

it can be tricky to write down the chain rule. Appropriately, we’ll use a tricky
convention: We’ll assume all entries of an array A are indexed by a single variable.
So, for example, to sum over all entries of an array A, we’ll just write

∑
iAi.

8. Show that ∂J
∂A = ∂J

∂S � σ
′(A), where we’re using � to represent the Hadamard

product. If A and B are arrays of the same shape, then their Hadamard product
A�B is an array with the same shape as A and B, and for which (A�B)i = AiBi.
That is, it’s just the array formed by multiplying corresponding elements of A
and B. Conveniently, in numpy if A and B are arrays of the same shape, then
A*B is their Hadamard product.

If we begin with the case A ∈ R (and therefore σ(A) ∈ R), then given J = f(σ(A)), by the
chain rule we have,

∂J

∂A
=

∂J

∂σ(A)

∂σ(A)

∂A
=
∂J

∂S
σ′(A) (8)

For an arbitrary dimension of A, we have,

(
∂J

∂A

)
i

=

(
∂J

∂S

)
i

(σ′(A))i =

(
∂J

∂S
� σ′(A)

)
i

(9)

Since every element of each matrix is equivalent, it is obvious that,

∂J

∂A
=
∂J

∂S
� σ′(A) (10)

10

9. Complete the class AffineNode in nodes.py. Be sure to propagate the gradi-
ent with respect to x as well, since when we stack these layers, x will itself
be the output of another node that depends on our optimization parame-
ters. If your code is correct, you should be able to pass test AffineNode in
mlp regression.t.py. Please attach a screenshot that shows the test results for
this question.

Below is our implentation of the affine node,

class AffineNode(object):

"""Node implementing affine transformation (W,x,b)-->Wx+b, where W is a matrix,

and x and b are vectors

Parameters:

W: node for which W.out is a numpy array of shape (m,d)

x: node for which x.out is a numpy array of shape (d)

b: node for which b.out is a numpy array of shape (m) (i.e. vector of length m)

"""

def __init__(self,W,x,b,node_name):

self.W = W

self.x = x

self.b = b

self.node_name = node_name

self.out = None

self.d_out = None

def forward(self):

self.out = np.dot(self.W.out, self.x.out) + self.b.out

self.d_out = np.zeros(self.out.shape)

return(self.out)

def backward(self):

dW = np.outer(self.d_out, self.x.out)

dx = self.d_out.T@self.W.out

db = self.d_out

self.W.d_out += dW

self.x.d_out += dx

self.b.d_out += db

return(self.d_out)

def get_predecessors(self):

return([self.W, self.x, self.b])

The test results for this problem are included at the end of problem eleven.

11

10. Complete the class TanhNode in nodes.py. As you’ll recall, d
dx tanh(x) = 1−tanh2 x.

Note that in the forward pass, we’ll already have computed tanh of the input
and stored it in self.out. So make sure to use self.out and not recalculate
it in the backward pass. If your code is correct, you should be able to pass
test TanhNode in mlp regression.t.py. Please attach a screenshot that shows
the test results for this question.

Below is our implementation of the hyperbolic tangent node,

class TanhNode(object):

"""Node tanh(a), where tanh is applied elementwise to the array a

Parameters:

a: node for which a.out is a numpy array

"""

def __init__(self,a,node_name):

self.a = a

self.node_name = node_name

self.out = None

self.d_out = None

def forward(self):

self.out = np.tanh(self.a.out)

self.d_out = np.zeros(self.out.shape)

return(self.out)

def backward(self):

da = (1-(self.out)**2)*self.d_out

self.a.d_out += da

return(self.d_out)

def get_predecessors(self):

return([self.a])

The test results for this problem are included at the end of problem eleven.

11. Implement an MLP by completing the skeleton code in mlp regression.py and
making use of the nodes above. Your code should pass the tests provided in

12

mlp regression.t.py. Note that to break the symmetry of the problem, we ini-
tialize our weights to small random values, rather than all zeros, as we often
do for convex optimization problems. Run the MLP for the two settings given
in the main() function and report the average training error. Note that with
an MLP, we can take the original scalar as input, in the hopes that it will learn
nonlinear features on its own, using the hidden layers. In practice, it is quite
challenging to get such a neural network to fit as well as one where we provide
features.

Below is our completion of our MLP initialization,

class MLPRegression(BaseEstimator, RegressorMixin):

""" MLP regression with computation graph """

def __init__(self, num_hidden_units=10, step_size=.005, init_param_scale=0.01,

max_num_epochs = 5000):

self.num_hidden_units = num_hidden_units

self.init_param_scale = init_param_scale

self.max_num_epochs = max_num_epochs

self.step_size = step_size

Build computation graph

self.x = nodes.ValueNode(node_name='x')

self.W = nodes.ValueNode(node_name='W1')

self.w = nodes.ValueNode(node_name='w2')

self.B = nodes.ValueNode(node_name='b1')

self.b = nodes.ValueNode(node_name='b2')

self.y = nodes.ValueNode(node_name='y')

self.inp = [self.x]

self.outp = [self.y]

self.affine = nodes.AffineNode(self.W,self.x,self.B,'aff')

self.t = nodes.TanhNode(self.affine, 'tanh')

self.pred = nodes.VectorScalarAffineNode(self.t, self.w, self.b, 'pred')

self.obj = nodes.SquaredL2DistanceNode(self.pred, self.y, 'obj')

self.para = [self.W, self.B, self.w, self.b]

self.graph = graph.ComputationGraphFunction(self.inp, self.outp, self.para,

self.pred, self.obj)

The following is the result of testing the previous nodes, and was copied from the command
prompt. Additionally, we have included the plot produced from running MLP, as well as
the average training loss after training with and without features (0.2636 and 0.0406, re-
spectively).

13

(base) C:\Users\Eric>python mlp_regression.t.py

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. W is 4.413758046406103e-09.

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. x is 2.1862879532491196e-09.

DEBUG: (Node affine) Max rel error for partial deriv w.r.t. b is 5.838672005255799e-10.

.DEBUG: (Node tanh) Max rel error for partial deriv w.r.t. a is 2.230540396328285e-09.

.DEBUG: (Parameter W1) Max rel error for partial deriv 1.5295129068763488e-05.

DEBUG: (Parameter b1) Max rel error for partial deriv 1.7459806546186938e-06.

DEBUG: (Parameter w2) Max rel error for partial deriv 9.211319418451656e-10.

DEBUG: (Parameter b2) Max rel error for partial deriv 5.93888528116735e-10.

.

--

Ran 3 tests in 0.013s

OK

Epoch 4950 : Ave objective= 0.2679233803442227 Ave training loss: 0.26361604621661144

Epoch 450 : Ave objective= 0.048600025031827074 Ave training loss: 0.04055385451506695

(Optional) We consider a generic classification problem with K classes over inputs x
of dimension d. Using a MLP we will compute a K-dimensional vector z representing

14

scores,
z = W2 tanh(W1x+ b1) + b2,

with W1 ∈ Rm×d, b1 ∈ Rm, W2 ∈ RK×m and b1 ∈ RK . Our model assumes that x
belongs to class k with probability

ezk/

K∑
k=1

ezk ,

which corresponds to applying a Softmax to the scores. Given this probabilistic
model we can train the model by minimizing the negative log-likelihood.

12. Implement a Softmax node. We provided skeleton code for class SoftmaxNode
in nodes.py. If your code is correct, you should be able to pass test SoftmaxNode
in multiclass.t.py. Please attach a screenshot that shows the test results for
this question.

13. Implement a negative log-likelihood loss node for multiclass classification. We
provided skeleton code for class NLLNode in nodes.py. The test code for this
question is combined with the test code for the next question.

14. Implement a MLP for multiclass classification by completing the skeleton code
in multiclass.py. Your code should pass the tests in test multiclass provided
in multiclass.t.py. Please attach a screenshot that shows the test results for
this question.

15

