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1. Are the following sets subspaces of IR3? Justify your answer.

(a) E1 = {(x, y, z) ∈ IR3| x− 2y + z = 0}

In order to show that E1 is a subspace of IR3, we must show that E1 contains
the zero-vector, is closed under vector-addition, and is closed under scalar mul-
tiplication. It is easy enough to verify that the zero-vector, (x, y, z) = (0, 0, 0) is
contained since,

(0)− 2(0) + (0) = 0 (1)

In order to show the other two properties, imagine that we have two vectors which
lie within E1, and are given by −→u = (x1, y1, z1) and −→v = (x2, y2, z2). Then, this
implies that,

(x1)− 2(y1) + (z1) = 0 (2)

(x2)− 2(y2) + (z2) = 0 (3)

Furthermore, the sum of these two equations is also implied to be true, so we have,

(x1 + x2)− 2(y1 + y2) + (z1 + z2) = 0 (4)

Which suggests that some other vector, (x1 + x2, y1 + y2, z1 + z2), is also within
E1. However, this new vector is the vector −→u + −→v . So, we have shown that
−→u ,−→v ∈ E1 implies −→u +−→v ∈ E1, and that E1 is closed under vector addition.

Lastly, we can multiply (2) by some scalar constant c, to obtain,
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c((x1)− 2(y1) + (z1)) = c(0) (5)

(cx1)− 2(cy1) + (cz1) = 0 (6)

Which implies that some some other vector, (cx1, cy1, cz1), is also within E1.
However, this new vector is the vector c−→u . So, we have shown that −→u ∈ E1

implies c−→u ∈ E1, and that E1 is closed under scalar multiplication.

Because E1 has satisfied these three conditions, E1 is a subspace of IR3.

(b) E2 = {(x, y, z) ∈ IR3| x− 2y + z = 3}

It is clear that E2 is not a subspace of IR3, since the zero-vector, (x, y, z) =
(0, 0, 0), is not contained,

(0)− 2(0) + (0) 6= 3 (7)

(c) E3 = {(x, y, z) ∈ IR3| 5x− y2 + z = 0}

It is clear that E3 is not a subspace of IR3 because it does not satisfy the property
of being closed under vector-addition. Take the following vectors, which both lie
in the subspace: −→u = (0,1,1), −→v = (0,2,4). Now, we can see that −→u +−→v is not
a solution,

−→u +−→v = (0, 3, 5) (8)

5(0)− (3)2 + 5 6= 0 (9)
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2. Let −→x1, ...,
−→xk ∈ IRn. Assume that −→x1 ∈ Span(−→x2, ...,

−→xk). Show that

Span(−→x1, ...,
−→xk) = Span(−→x2, ...,

−→xk) (10)

Observe the following definition of linear span,

The linear span of vectors −→x1, ...,−→xk is the set of all linear combinations of these
vectors. [Def. 1]

Given this definition, we can write the following spans as follows

Span(−→x1, ...,
−→xk) = {a1−→x1 + ... + ak

−→xk | ai ∈ IR} (11)

Span(−→x2, ...,
−→xk) = {b2−→x2 + ... + bk

−→xk | bi ∈ IR} (12)

It then becomes clear that Span(−→x2, ...,
−→xk) ⊆ Span(−→x1, ...,

−→xk) because when a1 =
0, the constants ai, bi can be matched to produce the same set of vectors. Since
−→x1 ∈ Span(−→x2, ...,

−→xk), we can write

−→x1 =

k∑
i=2

b
′

i
−→xi (13)

With b
′

i ∈ IR for all i. This then allows us to write,

Span(−→x1, ...,
−→xk) = {(a1b

′

2 + a2)−→x2 + ... + (a1b
′

k + ak)−→xk | ai ∈ IR} (14)

Span(−→x2, ...,
−→xk) = {b2−→x2 + ... + bk

−→xk | bi ∈ IR} (15)

This implies that Span(−→x1, ...,
−→xk) ⊆ Span(−→x2, ...,

−→xk) since the constants a1b
′

i+ai,bi
can always be matched to produce the same set of vectors. Therefore, since we have
shown Span(−→x1, ...,

−→xk) ⊆ Span(−→x2, ...,
−→xk) and Span(−→x2, ...,

−→xk) ⊆ Span(−→x1, ...,
−→xk),

we have,

Span(−→x1, ...,
−→xk) = Span(−→x2, ...,

−→xk) (16)
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3. Suppose that −→v1, ...,
−→vk ∈ IRn are linearly independent. Let −→x ∈ IRn and

assume that −→x /∈ Span(−→v1, ...,
−→vk). Show that (−→v1, ...,

−→vk,
−→x ) are linearly inde-

pendent.

Proof by contradiction. Assume that −→v1, ...,
−→vk ∈ IRn are linearly independent,

−→x ∈ IRn, −→x /∈ Span(−→v1, ...,
−→vk), and (−→v1, ...,

−→vk,
−→x ) are not a group of linearly

independent vectors.

From this, we can assume that the appending of −→x to (−→v1, ...,
−→vk) must have col-

lapsed the property of linear independence because (−→v1, ...,
−→vk) is independent but

(−→v1, ...,
−→vk,
−→x ) is not. Therefore, −→x must be a linear combination of the vectors

(−→v1, ...,
−→vk),

−→x =

k∑
i=1

ci
−→vi (17)

With ci ∈ IR for all i. This is because of the definition of linear dependency,

Vectors −→x1, ...,−→xk are linearly dependent if one of them can be expressed as a lin-
ear combination of the others. Otherwise, these vectors are said to be linearly
independent. [Def. 2]

Again, employing Definition 1 from above, we see that if −→x /∈ Span(−→v1, ...,
−→vk),

then it must follow that −→x is not a linear combination of the vectors (−→v1, ...,
−→vk).

In other words,

−→x 6=
k∑

i=1

ci
−→vi (18)

With ci ∈ IR for all i. Contradiction. Therefore, we have shown the original
statement of the problem.
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4. We prove in this problem Proposition 3.2 from the notes. You can use the
results of Problems 1.2 and 1.3 and of course the other results from the
lecture.

Let S be a subspace of IRn of dimension k and let −→x1, ...,
−→xk ∈ S.

(a) Show that if −→x1, ...,
−→xk are linearly independent, then (−→x1, ...,

−→xk) is a basis
of S

Proof by contradiction. Suppose (−→x1, ...,
−→xk) ∈ S is not a basis of S, a subspace

with dimension k, and that −→x1, ...,
−→xk are linearly independent.

Observe the following definition of basis,

A family (−→x1, ...,−→xn) of vectors in V form a basis if (1) (−→x1, ...,−→xn) are linearly
independent and (2) Span(−→x1, ...,−→xn) = V. [Def. 3]

Given that, from our assumption, (1) is satisfied, it must be that Span(−→x1, ...,
−→xk) 6=

S. However, this would imply that there exists, at a minimum, some −→v ∈ S such
that −→v /∈ Span(−→x1, ...,

−→xk). By Problem 3, this implies that (−→x1, ...,
−→xk,
−→v ) are

linearly independent. However, observe the following proposition,

Let V be a vector space that has dimension dim(V ) = n. Then any family of
vectors of V that are linearly independent contains at most n vectors [Prop. 1]

Proposition 1 implies that (−→x1, ...,
−→xk,
−→v ) is not linearly independent, because

this family contains k + 1 vectors. Contradiction.

Therefore, it has been shown that if −→x1, ...,
−→xk are linearly independent, then

(−→x1, ...,
−→xk) is a basis of S.

(b) Show that if Span(−→x1, ...,
−→xk) = S, then (−→x1, ...,

−→xk) is a basis of S.

Proof by contradiction. Assume that Span(−→x1, ...,
−→xk) = S, S has dimension k,

and that (−→x1, ...,
−→xk) is not a basis of S.

According to Definition 3, (−→x1, ...,
−→xk) is a basis of S if two conditions are sat-

isfied. We know that Span(−→x1, ...,
−→xk) = S, so the second condition is satisfied.

Therefore, (−→x1, ...,
−→xk) must not be linearly independent. Since we have assumed

that (−→x1, ...,
−→xk) are linearly dependent, there exists some i ∈ {1, ..., k} such that

xi ∈ Span((xj)j 6=i). One can assume that i = k by permuting the rows, and
hence, by Problem 2,

Span(−→x1, ...,
−→xk) = Span(−→x1, ...,

−−−→xk−1) = S (19)
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However, observe

Let V be a vector space that has dimension dim(V ) = n. Then any family of
vectors of V that spans V contains at least n vectors [Prop. 2]

This implies that

Span(−→x1, ...,
−−−→xk−1) 6= S (20)

Contradiction. The original statement has been proven.
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