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1. (2 points). Let A € R™*™ and ¥ € R". We consider the least square prob-

lem:

minimize |[AX —¥|[?> with respect to X € R™

We know from the lecture that x5 </ AT? is a solution of the above.

(a)

(b)

Show that XL | Ker(A).

We know that we can express A and A as the following,

A=UxV"T

‘ 1
At =vyxU” S

Now, we know from previous work that the first r» columns of U € IR™*",
U, ..., ﬁr, form a basis for the image of A, and the last m—r rows of V€ IR™*™,
7r+1, <., Vum , form a basis for the kernel of A. Furthermore, for i € {1,...,7},
we must have that v; L Ker(A), since the rows of an orthogonal matrix V are
all orthogonal.

We know that X5 can be expressed as a linear combination of 71, oo, V', since
these vectors form a basis for the image of AT, as shown from (1), and we know
that X5 is in the image of A" from the statement. Since X LS can be expressed
as a linear combination of V1, ..., vV, L Ker(A), it is clear that X=5 1 Ker(A).

Deduce that X9 is the solution of the least square equation that has
the smallest (Euclidean) norm.

We know that the full set of solutions to the minimization problem is given by,



{A'Y + V|V € Ker(A)} (2)

Since we have that X5 1 Ker(A), we also have that, A'Y LV for all
V € Ker(A). Now, take an alternate solution from the set, X* = ATY + V.
Our goal is to show that,

IXES) < (1% 3)
|ATY ]| < [|ATY + V|| (4)

But since ATY L ¥ for all V € Ker(A), we can write,

AT ] < [|ATY + VI = |1 ATV + || V] (5)

Which is clealy true. Therefore, X -5 is the solution of the least square equation
that has the smallest (Euclidean) norm.



2. (2 points). Let A € R**? and ¥ € IR". The Ridge regression adds a ¢,
penalty to the least square problem:

minimize ||[AX — ¥|]2+ A||X|]> with respect to X € R™

for some penalization parameter A > 0. Show that the above admits a
unique solution given by

X Ridge — (AT A+ \Id,,) ATy

We define f(X) = ||[AX — ¥|2 + M| X||2. We know that f(X) is convex because the
sum of convex functions in convex. Therefore, it must admit a minimum. Then, we
have that,

VI(X)=AT(AX - ¥) +AX (6)

We then set the gradient equal to zero and solve for X. This yields,

ATAY —ATY +23X =0 (7)
ATAR + XX = ATY (8)
(ATA+\d,)X =ATY (9)

Then, we know that (AT A + \Id,,) is invertible for some choice of A > 0, because
as a previous result, we had that, for any symmetric matrix M, there exists A > 0
such that the matrix M + A\ d,, is positive definite. We know that AT A is symmetric,
and therefore, there is some A\ > 0 which forces (AT A + \Id,,) to be positive definite.
Furthermore, any positive definite matrix is invertible. So, for some choice of A we
have,

X idge — (AT A+ \Id,) " 'ATY (10)



. (3 points). Recall that ||M||s, denotes the spectral norm of a matrix M.

(a) Let A € R™™. Show that for all X € R™,

1A% ]| < |[Allsp ]I X I

Since we know that every A = UXVT, with orthogonal matrices U and V7T, and
diagonal matrix 3, we have that,

ATA=vyTuTusy? = ve@yT (11)

Where () holds the square of the diagonal values of 3, and hence the eigenval-
ues of AT A. Then,

|IAX|| = XTATAX (12)

Since ¥ € R™ and V € R™*™ and orthogonal, we have that all X can be
expressed as a combination of the columns of V. So,

min(m,n) min(m,n)
AR =XTATAR = [ ) oul | A4 Y o
i=1 i=1
min(m,n) min(m,n)
= Z Ciﬁlr Z Ci(ATAﬁi)
i=1 =1 (13)
min(m,n) min(m,n)
= Z Ciﬁlr Z Cz)\zﬁz
i=1 =1
min(m,n) min(m,n)
i=1 =1
And therefore, we are entitled to write,
min(m,n) min(m,n) min(m,n)
Amin - Y. < > AN=|ARXP < Apar >, (14)
i=1 i=1 i=1



(b)

(c)

Where the first part of the equation merely served as a point of comparison.
Then, taking the square root,

min(m,n)

1AX]] < \|Amaz D & =1 AllsplIX]] (15)

i=1

Show that for all A € R"*™ and B € R™xk:

|AB[sp < [|Allsp||Bllsp

From the previous result, we know if we take some W € IR* such that Hﬂ“ =1,
then we have,

IABY || < [|Allsp||BEI] < [|Allspl|Bllsp [T = || Allspl|Bllsp  (16)

So, we have, for any U € IR¥ such that || || = 1,

IABY | < [|Allsl|BlIsy (17)

Now if we take the value of W € IR¥ such that ||| = 1 which maximizes
||ABW||, this is precisely the definition of the spectral norm of ||AB||. Thus,

|AB[sp < [[Allsp||Bllsp (18)

Is it true that for all n,m,k > 1, all A € R**™ and B € R™*k:

[AB||r < [|Allr[|Bl|F
Give a proof or a counter-example.

First, note that,



n k
IAB|: =SS (R7B,)? (19)

i=1 j=1

%
Where @7 and b ;j are the 4-th row and j-th column of A and B, respectively.

3

By Cauchy-Shwartz, we see that,

n k n k
> T
DD @TD) <D D &Pl
i=1 j=1 i=1 j=1
n k (20)
N -
DI EAI
i=1 j=1
= ||A|[%11B]1%
So, summarizing,
n k N
%
|AB[|7 =Y > (&Ib;)* < [|AlI7]BII% (21)

i=1 j=1



4.

(3 points). Consider the 5 x 4 matrix A and y € IR® given by:

1.1 —-23 1.7 45 ~13.8
1.7 16 38 03 —2.7

A=1]10 01 13 02 and Y = 96 (22)
-05 —04 0 —13 —2.4
-05 29 —03 20 3.9

In each of the following questions, it is intended that you solve the prob-
lem using the programming language of your choice and only report the
numerical answer to 3 decimal places, without including your code files in
your submission.

(a) Compute the minimizer X* € R* of

14X = V|

We find during our use of Python that,

import numpy as np

A = np.array([[1.1,-2.3,1.7,4.5],[1.7,1.6,3.8,08.3],[1,08.1,1.3,8.2],[-0.5,-0.4,08,-1.3],[-8.5,2.9,-0.3,2]])
y = np.array([-13.8,-2.7,9.6,-2.4,3.9])
A.TRA
array([[ 5.6 , -8.96, 9.78, 5.31],
[-8.96, 16.43, 1.43, -3.53],
[ 2.78, 1.43, 19.11, 8.45],
[ 5.31, -3.53, 8.45, 26.87]])

inv = np.linalg.inv(A.T@A)
xmin = inv@A. Ty
print('X* is given by: ", xmin)

X* is given by: [14.07489328 3.68631835 -7.87274476 -1.74716621]

(b) Find a vector ¥ € IR® with v; > 0 and ||¥|| = 1 such that the minimizer

of
1AX — (¥ + V)|

is also X*.

Here, we find the solution for vector ?, and check out result,



import scipy.linalg
v = scipy.linalg.null_space(A.T)
print('v is given by: ",v.T[@])

v is given by: [ ©.83521722 -0.26599821 ©.7820@5836 ©.51882759 @.21917388]

And then we check our solution and find we yield the same minimum as the
previous part,

newy = y+v.T[8]
xminnew = inv@A. T@Enewy
print('The new minimum is given by: ', xmin)

The new minimum is given by: [14.67489328 3.68631835 -7.87274476 -1.74716021]

(c) Find a vector W € IR® with w; > 0 and ||W|| = 1 such that the minimizer
" of

14X — (¥ + W)

maximizes the error ||[X* — X'|| and also give the resulting error. That
is, we are trying to corrupt the vector ? with a fixed amount of noise
W that maximally modifies the least squares solution.

We find the solution given below, and then we check this solution programmati-
cally,

inv = np.linalg.inv(A.T@A)

Adag = inv@A.T

M = Adag.T@Adag

1,v = np.linalg.eigh(M)

print{'w is given by: ",-1%*v[:,-1])

w is given by: [ @.17718915 ©.17894147 -0.52073486 ©.80126178 ©.15296916]

Here, we check the solution using 10,000 random vectors of unit norm as a com-
parison, ensuring that each random vector produces a norm less than our theo-
rized maximum norm.



from random import gauss

def make_rand_vector(dims):
vec = [gauss(8, 1) for i in range(dims)]
mag = sum(x**2 for x in wvec) ** .5
if vec[e] < e:
vec[8] = -1*vec[@]
return np.array([x/mag for x in vec])

maxnorm = np.linalg.norm(inv@A.T@y - Inv@A.T@(y+v[:,-1]1))
for i in range(168€@):
t = make_rand_vector(s)
if np.linalg.norm(inv@A.T@y - inv@A.T@(y+t)) > maxnorm:
print(np.linalg.norm{inv@A. Ty - inv@A.T@(y+t)))
print(t)
break
if i==0009:
print('Success!")

Success!



