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1. (2 points). Let A ∈ IRn×m and −→y ∈ IRn. We consider the least square prob-
lem:

minimize ||A−→x −−→y ||2 with respect to −→x ∈ IRm

We know from the lecture that −→x LS def
= A†−→y is a solution of the above.

(a) Show that −→x LS ⊥ Ker(A).

We know that we can express A and A† as the following,

A = UΣV T

A† = V Σ‘UT
(1)

Now, we know from previous work that the first r columns of U ∈ IRn×n,
−→u 1, ...,

−→u r, form a basis for the image of A, and the last m−r rows of V ∈ IRm×m,
−→v r+1, ...,

−→v m , form a basis for the kernel of A. Furthermore, for i ∈ {1, ..., r},
we must have that vi ⊥ Ker(A), since the rows of an orthogonal matrix V are
all orthogonal.

We know that −→x LS can be expressed as a linear combination of −→v 1, ...,
−→v r, since

these vectors form a basis for the image of A†, as shown from (1), and we know
that −→x LS is in the image of A† from the statement. Since −→x LS can be expressed
as a linear combination of −→v 1, ...,

−→v r ⊥ Ker(A), it is clear that −→x LS ⊥ Ker(A).

(b) Deduce that −→x LS is the solution of the least square equation that has
the smallest (Euclidean) norm.

We know that the full set of solutions to the minimization problem is given by,
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{A†−→y +−→v | −→v ∈ Ker(A)} (2)

Since we have that −→x LS ⊥ Ker(A), we also have that, A†−→y ⊥ −→v for all
−→v ∈ Ker(A). Now, take an alternate solution from the set, −→x ∗ = A†−→y + −→v .
Our goal is to show that,

||−→x LS || < ||−→x ∗|| (3)

||A†−→y || < ||A†−→y +−→v || (4)

But since A†−→y ⊥ −→v for all −→v ∈ Ker(A), we can write,

||A†−→y || < ||A†−→y +−→v || = ||A†−→y ||+ ||−→v || (5)

Which is clealy true. Therefore, −→x LS is the solution of the least square equation
that has the smallest (Euclidean) norm.
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2. (2 points). Let A ∈ IRn×d and −→y ∈ IRn. The Ridge regression adds a `2
penalty to the least square problem:

minimize ||A−→x −−→y ||2 + λ||−→x ||2 with respect to −→x ∈ IRm

for some penalization parameter λ > 0. Show that the above admits a
unique solution given by

−→x Ridge = (ATA+ λIdn)−1AT−→y

We define f(−→x ) = ||A−→x −−→y ||2 + λ||−→x ||2. We know that f(−→x ) is convex because the
sum of convex functions in convex. Therefore, it must admit a minimum. Then, we
have that,

∇f(−→x ) = AT (A−→x −−→y ) + λ−→x (6)

We then set the gradient equal to zero and solve for −→x . This yields,

ATA−→x −AT−→y + λ−→x = 0 (7)

ATA−→x + λ−→x = AT−→y (8)

(ATA+ λIdn)−→x = AT−→y (9)

Then, we know that (ATA + λIdn) is invertible for some choice of λ > 0, because
as a previous result, we had that, for any symmetric matrix M , there exists λ > 0
such that the matrix M + λIdn is positive definite. We know that ATA is symmetric,
and therefore, there is some λ > 0 which forces (ATA+ λIdn) to be positive definite.
Furthermore, any positive definite matrix is invertible. So, for some choice of λ we
have,

−→x Ridge = (ATA+ λIdn)−1AT−→y (10)
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3. (3 points). Recall that ||M ||Sp denotes the spectral norm of a matrix M.

(a) Let A ∈ IRn×m. Show that for all −→x ∈ IRm,

||A−→x || ≤ ||A||Sp||−→x ||

Since we know that every A = UΣV T , with orthogonal matrices U and V T , and
diagonal matrix Σ, we have that,

ATA = V ΣTUTUΣV T = V Σ(2)V T (11)

Where Σ(2) holds the square of the diagonal values of Σ, and hence the eigenval-
ues of ATA. Then,

||A−→x || = −→x TATA−→x (12)

Since −→x ∈ IRm and V ∈ IRm×m and orthogonal, we have that all −→x can be
expressed as a combination of the columns of V . So,

||A−→x ||2 = −→x TATA−→x =

min(m,n)∑
i=1

ci
−→u T

i

ATA

min(m,n)∑
i=1

ci
−→u i


=

min(m,n)∑
i=1

ci
−→u T

i

min(m,n)∑
i=1

ci(A
TA−→u i)


=

min(m,n)∑
i=1

ci
−→u T

i

min(m,n)∑
i=1

ciλi
−→u i


=

min(m,n)∑
i=1

c2iλi
−→u T

i
−→u i =

min(m,n)∑
i=1

c2iλi

(13)

And therefore, we are entitled to write,

λmin

min(m,n)∑
i=1

c2i ≤
min(m,n)∑

i=1

c2iλi = ||A−→x ||2 ≤ λmax

min(m,n)∑
i=1

c2i (14)
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Where the first part of the equation merely served as a point of comparison.
Then, taking the square root,

||A−→x || ≤

√√√√λmax

min(m,n)∑
i=1

c2i = ||A||Sp||−→x || (15)

(b) Show that for all A ∈ IRn×m and B ∈ IRm×k:

||AB||Sp ≤ ||A||Sp||B||Sp

From the previous result, we know if we take some −→u ∈ IRk such that ||−→u || = 1,
then we have,

||AB−→u || ≤ ||A||Sp||B−→u || ≤ ||A||Sp||B||Sp||−→u || = ||A||Sp||B||Sp (16)

So, we have, for any −→u ∈ IRk such that ||−→u || = 1,

||AB−→u || ≤ ||A||Sp||B||Sp (17)

Now if we take the value of −→u ∈ IRk such that ||−→u || = 1 which maximizes
||AB−→u ||, this is precisely the definition of the spectral norm of ||AB||. Thus,

||AB||Sp ≤ ||A||Sp||B||Sp (18)

(c) Is it true that for all n,m, k ≥ 1, all A ∈ IRn×m and B ∈ IRm×k:

||AB||F ≤ ||A||F ||B||F

Give a proof or a counter-example.

First, note that,
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||AB||2F =

n∑
i=1

k∑
j=1

(−→a T
i

−→
b j)

2 (19)

Where −→a T
i and

−→
b j are the i-th row and j-th column of A and B, respectively.

By Cauchy-Shwartz, we see that,

n∑
i=1

k∑
j=1

(−→a T
i

−→
b j)

2 ≤
n∑

i=1

k∑
j=1

||−→a i||2||
−→
b j ||2

=

n∑
i=1

||−→a i||2
k∑

j=1

||
−→
b j ||2

= ||A||2F ||B||2F

(20)

So, summarizing,

||AB||2F =

n∑
i=1

k∑
j=1

(−→a T
i

−→
b j)

2 ≤ ||A||2F ||B||2F (21)
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4. (3 points). Consider the 5× 4 matrix A and −→y ∈ IR5 given by:

A =


1.1 −2.3 1.7 4.5
1.7 1.6 3.8 0.3
1.0 0.1 1.3 0.2
−0.5 −0.4 0 −1.3
−0.5 2.9 −0.3 2.0

 and −→y =


−13.8
−2.7
9.6
−2.4
3.9

 (22)

In each of the following questions, it is intended that you solve the prob-
lem using the programming language of your choice and only report the
numerical answer to 3 decimal places, without including your code files in
your submission.

(a) Compute the minimizer −→x ∗ ∈ IR4 of

||A−→x −−→y ||

We find during our use of Python that,

(b) Find a vector −→v ∈ IR5 with v1 > 0 and ||−→v || = 1 such that the minimizer
of

||A−→x − (−→y +−→v )||

is also −→x ∗.

Here, we find the solution for vector −→v , and check out result,
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And then we check our solution and find we yield the same minimum as the
previous part,

(c) Find a vector −→w ∈ IR5 with w1 > 0 and ||−→w || = 1 such that the minimizer
−→x ′

of

||A−→x − (−→y +−→w)||

maximizes the error ||−→x ∗−−→x ′ || and also give the resulting error. That
is, we are trying to corrupt the vector −→y with a fixed amount of noise
−→w that maximally modifies the least squares solution.

We find the solution given below, and then we check this solution programmati-
cally,

Here, we check the solution using 10,000 random vectors of unit norm as a com-
parison, ensuring that each random vector produces a norm less than our theo-
rized maximum norm.
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