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1. (2 points). Let f,g:IR® — IR be the functions defined by

1
f(x,y,z):2x2+y2+§z2+4x—6y—z+1 (1)

g(x,y,2) = —ayz+ax+y+=z (2)

Compute the critical points of f and g and determine if they are global/local
maximizers/minimizers or saddle points.

Concerning f, we have,
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Setting Vf = 0 implies that a critical point occurs at (x,y,z) = (—1,3,1). Further-
more, the Hessian, H is given by,
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Since H; is a diagonal matrix, the eigenvalues can be read directly from the diag-
onal. All of the eigenvalues are strictly positive implying that the critical point
(x,y,2) = (=1,3,1) is a local minimum. Upon further inspection of the gradient,
we realize this is also a global minimum.



Concerning g, we have,

% —yz+1
Vg=|5,| = |7z +1 (5)
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Setting Vg = 0 implies that a critical point occurs when (x,y,z) = (1,1,1) and when
(x,y,2) = (—1,—1,—1). Furthermore, the Hessian, H, is given by,
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Then our critical points have the associated Hessians,

0 -1 -1 01 1
H,1,1,1)= |-1 0 —1| Hy(-1,-1,-1)=[1 0 1 (7)
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The critical point Hy(1,1,1) has eigenvalues Ao = —2 and A\ 3 = 1, and is therefore a
saddle point. The critical point H,(—1, —1, —1) has eigenvalues \; = —1 and A3 = 2,
and is therefore a saddle point.

. (3 points). We consider the following constrained optimization problem:

minimize x — y + 2 subject to 2?2 +y? + 22 =land v +y+2=1

We admit that this minimization problem has (at least) one solution (this
comes from the fact that a continuous function on a compact set attains
its minimum). Using Lagrange multipliers, show that the minimization
problem has a unique solution and compute its coordinates.

We have the following general formula for the Lagrangian concerning our problem,

‘C)\l,)\z(xayvzaAla AQ) = f(l',y,Z) + )\191($7y72) + )\292(1’,y72) (8)



Where f represents the function that is to be minimized, and g; and gs represent the
constraints. Then,

Lain(@y,z, %) =z —y+ 2+ @ +y°+22 1)+ a(+y+z-1) (9)

Then, VL provides us with a set of equations to be solved simultaneously,

%:1+2A1I+>\2:0:>I:71T71>\2 (10)
%:—1+2>\1y+>\2:0=>y=12_/\f\2 (11)
%:1+2/\1z+A2=O=>z=_1T_1A2=>x=z (12)
g—)\ﬁl:x2+y2+z271:0 (13)
;)Ti:ererz—l:o (14)

Then we have,
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And knowing the values of A; and Ay implies that we have two sets of possible values
in terms of coordinates: (%,—1,2) and (0,1,0). Both of these sets of coordinates
satisfy the constraint equations, it simply remains to be seem which provides a lower

functional value for f.

G50 =2 a7)
f(0,1,0) = -1 (18)



Therefore (z,y, z) = (0,1, 0) corresponds to the minimum of f which satisfies the con-
straint equations.

3. (2 points). Let W € R" be a vector such that for all i # j, |d;| # |W,|. We
consider the constrained optimization problem,

maximize (U, X) subjectto |[X]; <1

(a) Show that this problem has a unique solution X* and give the expres-
sion of X* in terms of 0 (Lagrange multipliers are not needed here).

We first note that maximizing (W, X) is equivalent to maximizing uizy + ... +
UnZp. Furthermore, we know that ||X||; < 1 is equivalent to |zq|+ ... + |zn| < 1.
We then have that,

(ﬁ, ?) =UIT] + .. FULT,

(19)
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Then we define some ¢* such that for all j € {1,...,n} we have |u}| > |u;|. Then,
we have that every for every u; we can write the expression |u;| = |u}| — a; such
that a; > 0. Then, continuing from above, we have,
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Thus this shows that the solution is given by X* = ?;‘, that is a zector of all
zeros except for the ¢* location, which is populated with +1 (the same sign of
u}). Suppose is is not the case that X* = ?j‘, but instead X* = ¥. If X* = ?,
then one possibility is that for some i # *, x; # 0. If this is the case, then we
see by the inequality that the expression is reduced by the corresponding term



within the summation, and thus cannot produce the maximum <ﬂ7 ?;‘ ). Thus,
we have shown that (W, X) is maximized when X* = X*, as defined above.

(b) Give a graphical interpretation.

Observe the following graphic and explanation,

The graphic displays the canonical axes in IR?. In red, the boundaries of the
¢1 norm are shown, and in blue a random vector U € IR? has been chosen.
Furthermore, here we have shown the optimal solution for our choice of ?7 given
in black. Note that (ﬁ, ?) would result in a vector lying along ﬁ, and ending
where the green vector intersects U. It is clear that no other X can be drawn such
that it falls within or upon the boundary given in red, and fosters a larger vector
on u. In fact, it is clear that if we rotate o by 30 degrees counter-clockwise, X
would snap to the vertical canonical axis, in order to produce the largest inner
product. A similar process occurs in higher dimensions, thus, the optimal X
always lies in the direction of one of the canonical axes, which corresponds to the
component of U that has the greatest magnitude.

4. (3 points). We will prove the spectral theorem in this problem: you are
therefore not allowed to use the spectral theorem and its consequences to
solve this exercise.

Let A be an n x n symmetric matrix. We consider the following optimiza-
tion problem,

maximize XTAX subject to ||X]| =1

This optimization problem admits a solution (this comes from the fact that
a continuous function on a compact set achieved its maximum) that we de-
note by V1.



(a) Using Lagrange multipliers, show that V. is an eigenvector of A.

We wish to minimize — X7 AX (which is equivalent to maximizing ?TA?) un-
der the constraint that ||X|| = 1. By use of Lagrange multipliers, we have that,

L3, (R A0) = —RTAX + M (TR - 1) (21)

Then, we have that,

%ﬂ:_zA?Jﬂ/\l?:O (22)
AX =\ X% (23)

Which suffices to show that (Aq, ?) is an eigenvalue, eigenvector pair (since . We
will refer to this pair as (u1, V1) to avoid confusion in future parts.

(b) We now consider the optimization problem
maximize XTAX subject to |[|X|/=1and (X,Vi)=0

For the same reason as above, this problem admits a solution that we
denote by V5. Show that V', is an eigenvector of A that is orthogonal

to 71.

Again, we wish to minimize — X7 AX (which is equivalent to maximizing X7 AX)
under the constraints that || X || = 1, and (X, V1) = 0. Then, by use of Lagrange
multipliers, we have,

Lo (X, VA0 0) = —XTAX + M (XTX — 1)+ XTIV (24)

Then, we have that,

£A1’A2<?8’§1’A1’A2) = 2AX + 20X + V1 =0 (25)



If we multiply by 71T we find,

—2VTAR 4+ 2VT MK + VTV =0 (26)
—oVTAR + 20 VTR + Xo|[V1]| =0 (27)

The middle term becomes zero as a result of our conditions. Additionally,

||[¥1]] = 1. So,

—2VTAR 4+ X2 =0 (28)
Ao =2VT AR (29)

And by the properties of inner product,

Ao = 2(V1,AR) = 2(AX, V1) = 2XTATV, = 2XTAV, (30)

And furthermore, from the previous part, AV, = u171. Additionally, using
(?, 71> =0, we have,

)\2 = 2?TA71 = 2/141?,11?1 =0 (31)
The Lagrangian then reduces to,

Laipe (X, VA N0) B
o= = 24X +2,X =0 (32)

And as before, we have,

AX = X (33)

Though this time, we label the eigenvalue, eigenvector pair as (us, 72)



(c) We now consider the optimization problem
maximize XTAX subject to ||¥]||=1and (¥, V)= (X,V3) =0

Again, this problem admits a solution that we denote by V5. Show
that V5 is an eigenvector of A that is orthogonal to V1 and V.

Again, we wish to minimize ~XTAX (which is equivalent to maximizing ?TA?)
under the constraints that || X|| = 1, and (X, V1) = (X, V) = 0. Then, by use
of Lagrange multipliers, we have,

Lo(F V1 Vo) = —RTAR 4 M(RTR — 1)+ 0RTV,

TV (34)

Then, we have,

L (X, 37% Vo) | 942 1 onT 4 a4 AT =0 (35)

If we multiply by 71T we find,

VTAX + 20 VTR + VIV + M VIV =0 (36)

The second and last terms become zero as a result of our conditions. Addition-
aHY7 H71|| = 17 S0,

2VTAR + X2 =0 (37)

Then we find the exact same problem encountered at the end of the previous
problem, resulting in Ay = 0. Rewriting the Lagrangian yields,

Lr(X, Z% Vo) _ —2AX + 20X + A3 Vo =0 (38)



Where now the problem is the same as the Lagrangian from the previous ques-
tion. It is trivial to see that multiplying by 72T would yield that A3 = 0. Then,
finally, we are left with,

AX =\ X (39)

Though this time, we label the eigenvalue, eigenvector pair as (us, ?3)



