
DS-GA 1014 - Homework 11

Eric Niblock

November 21st, 2020

1. (2 points). Let f, g : IR3 → IR be the functions defined by

f(x, y, z) = 2x2 + y2 +
1

2
z2 + 4x− 6y − z + 1 (1)

g(x, y, z) = −xyz + x+ y + z (2)

Compute the critical points of f and g and determine if they are global/local
maximizers/minimizers or saddle points.

Concerning f , we have,

∇f =

∂f∂x∂f∂y
∂f
∂z

 =

4x+ 4
2y − 6
z − 1

 (3)

Setting ∇f = 0 implies that a critical point occurs at (x, y, z) = (−1, 3, 1). Further-
more, the Hessian, Hf is given by,

Hf =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂2y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =

4 0 0
0 2 0
0 0 1

 (4)

Since Hf is a diagonal matrix, the eigenvalues can be read directly from the diag-
onal. All of the eigenvalues are strictly positive implying that the critical point
(x, y, z) = (−1, 3, 1) is a local minimum. Upon further inspection of the gradient,
we realize this is also a global minimum.
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Concerning g, we have,

∇g =

∂f∂x∂f∂y
∂f
∂z

 =

−yz + 1
−xz + 1
−xy + 1

 (5)

Setting ∇g = 0 implies that a critical point occurs when (x, y, z) = (1, 1, 1) and when
(x, y, z) = (−1,−1,−1). Furthermore, the Hessian, Hg is given by,

Hg =


∂2f
∂x2

∂2f
∂x∂y

∂2f
∂x∂z

∂2f
∂y∂x

∂2f
∂2y

∂2f
∂y∂z

∂2f
∂z∂x

∂2f
∂z∂y

∂2f
∂z2

 =

 0 −z −y
−z 0 −x
−y −x 0

 (6)

Then our critical points have the associated Hessians,

Hg(1, 1, 1) =

 0 −1 −1
−1 0 −1
−1 −1 0

 Hg(−1,−1,−1) =

0 1 1
1 0 1
1 1 0

 (7)

The critical point Hg(1, 1, 1) has eigenvalues λ2 = −2 and λ1,3 = 1, and is therefore a
saddle point. The critical point Hg(−1,−1,−1) has eigenvalues λ1,2 = −1 and λ3 = 2,
and is therefore a saddle point.

2. (3 points). We consider the following constrained optimization problem:

minimize x− y + z subject to x2 + y2 + z2 = 1 and x+ y + z = 1

We admit that this minimization problem has (at least) one solution (this
comes from the fact that a continuous function on a compact set attains
its minimum). Using Lagrange multipliers, show that the minimization
problem has a unique solution and compute its coordinates.

We have the following general formula for the Lagrangian concerning our problem,

Lλ1,λ2
(x, y, z, λ1, λ2) = f(x, y, z) + λ1g1(x, y, z) + λ2g2(x, y, z) (8)
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Where f represents the function that is to be minimized, and g1 and g2 represent the
constraints. Then,

Lλ1,λ2
(x, y, z, λ1, λ2) = x− y + z + λ1(x2 + y2 + z2 − 1) + λ2(x+ y + z − 1) (9)

Then, ∇L provides us with a set of equations to be solved simultaneously,

∂L
∂x

= 1 + 2λ1x+ λ2 = 0 =⇒ x =
−1− λ2

2λ1
(10)

∂L
∂y

= −1 + 2λ1y + λ2 = 0 =⇒ y =
1− λ2

2λ1
(11)

∂L
∂z

= 1 + 2λ1z + λ2 = 0 =⇒ z =
−1− λ2

2λ1
=⇒ x = z (12)

∂L
∂λ1

= x2 + y2 + z2 − 1 = 0 (13)

∂L
∂λ2

= x+ y + z − 1 = 0 (14)

Then we have,

x+ y + z = 1 =⇒ 2

(
−1− λ2

2λ1

)
+

1− λ2
2λ1

= 1 =⇒ λ1 =
−3λ2 − 1

2
(15)

x2 + y2 + z2 = 1 =⇒ 2

(
−1− λ2

2λ1

)2

+

(
1− λ2

2λ1

)2

= 1 =⇒ λ2 =
−1± 2

3
(16)

And knowing the values of λ1 and λ2 implies that we have two sets of possible values
in terms of coordinates: ( 2

3 ,−
1
3 ,

2
3 ) and (0, 1, 0). Both of these sets of coordinates

satisfy the constraint equations, it simply remains to be seem which provides a lower
functional value for f .

f(
2

3
,−1

3
,

2

3
) =

5

3
(17)

f(0, 1, 0) = −1 (18)
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Therefore (x, y, z) = (0, 1, 0) corresponds to the minimum of f which satisfies the con-
straint equations.

3. (2 points). Let −→u ∈ IRn be a vector such that for all i 6= j, |−→u i| 6= |−→u j |. We
consider the constrained optimization problem,

maximize 〈−→u ,−→x 〉 subject to ||−→x ||1 ≤ 1

(a) Show that this problem has a unique solution −→x ∗ and give the expres-
sion of −→x ∗ in terms of −→u (Lagrange multipliers are not needed here).

We first note that maximizing 〈−→u ,−→x 〉 is equivalent to maximizing u1x1 + ... +
unxn. Furthermore, we know that ||−→x ||1 ≤ 1 is equivalent to |x1|+ ...+ |xn| ≤ 1.
We then have that,

〈−→u ,−→x 〉 = u1x1 + ...+ unxn

≤ |u1||x1|+ ...+ |un||xn|
(19)

Then we define some i∗ such that for all j ∈ {1, ..., n} we have |u∗i | ≥ |uj |. Then,
we have that every for every uj we can write the expression |uj | = |u∗i | −αj such
that αj ≥ 0. Then, continuing from above, we have,

〈−→u ,−→x 〉 = u1x1 + ...+ unxn

≤ |u1| · |x1|+ ...+ |un| · |xn|
= |x1| · (|u∗i | − α1) + ...+ |xn| · (|u∗i | − αn)

= |u∗i | · ||
−→x ||1 −

n∑
i∗ 6=j

αj · |xj |

≤ 〈−→u ,−→x ∗i 〉

(20)

Thus this shows that the solution is given by −→x ∗ = −→x ∗i , that is a zector of all
zeros except for the i∗ location, which is populated with ±1 (the same sign of
u∗i ). Suppose is is not the case that −→x ∗ = −→x ∗i , but instead −→x ∗ = −→x . If −→x ∗ = −→x ,
then one possibility is that for some i 6= i∗, xi 6= 0. If this is the case, then we
see by the inequality that the expression is reduced by the corresponding term
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within the summation, and thus cannot produce the maximum 〈−→u ,−→x ∗i 〉. Thus,
we have shown that 〈−→u ,−→x 〉 is maximized when −→x ∗ = −→x ∗i , as defined above.

(b) Give a graphical interpretation.

Observe the following graphic and explanation,

The graphic displays the canonical axes in IR2. In red, the boundaries of the
`1 norm are shown, and in blue a random vector −→u ∈ IR2 has been chosen.
Furthermore, here we have shown the optimal solution for our choice of −→x , given
in black. Note that 〈−→u ,−→x 〉 would result in a vector lying along −→u , and ending
where the green vector intersects −→u . It is clear that no other −→x can be drawn such
that it falls within or upon the boundary given in red, and fosters a larger vector
on −→u . In fact, it is clear that if we rotate −→u by 30 degrees counter-clockwise, −→x
would snap to the vertical canonical axis, in order to produce the largest inner
product. A similar process occurs in higher dimensions, thus, the optimal −→x
always lies in the direction of one of the canonical axes, which corresponds to the
component of −→u that has the greatest magnitude.

4. (3 points). We will prove the spectral theorem in this problem: you are
therefore not allowed to use the spectral theorem and its consequences to
solve this exercise.

Let A be an n× n symmetric matrix. We consider the following optimiza-
tion problem,

maximize −→x TA−→x subject to ||−→x || = 1

This optimization problem admits a solution (this comes from the fact that
a continuous function on a compact set achieved its maximum) that we de-
note by −→v 1.
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(a) Using Lagrange multipliers, show that −→v 1 is an eigenvector of A.

We wish to minimize −−→x TA−→x (which is equivalent to maximizing −→x TA−→x ) un-
der the constraint that ||−→x || = 1. By use of Lagrange multipliers, we have that,

Lλ1
(−→x , λ1) = −−→x TA−→x + λ1(−→x T−→x − 1) (21)

Then, we have that,

∂Lλ1
(−→x , λ1)

∂−→x
= −2A−→x + 2λ1

−→x = 0 (22)

A−→x = λ1
−→x (23)

Which suffices to show that (λ1,
−→x ) is an eigenvalue, eigenvector pair (since . We

will refer to this pair as (µ1,
−→v 1) to avoid confusion in future parts.

(b) We now consider the optimization problem

maximize −→x TA−→x subject to ||−→x || = 1 and 〈−→x ,−→v 1〉 = 0

For the same reason as above, this problem admits a solution that we
denote by −→v 2. Show that −→v 2 is an eigenvector of A that is orthogonal
to −→v 1.

Again, we wish to minimize−−→x TA−→x (which is equivalent to maximizing−→x TA−→x )
under the constraints that ||−→x || = 1, and 〈−→x ,−→v 1〉 = 0. Then, by use of Lagrange
multipliers, we have,

Lλ1,λ2
(−→x ,−→v 1, λ1, λ2) = −−→x TA−→x + λ1(−→x T−→x − 1) + λ2

−→x T−→v 1 (24)

Then, we have that,

Lλ1,λ2
(−→x ,−→v 1, λ1, λ2)

∂−→x
= −2A−→x + 2λ1

−→x + λ2
−→v 1 = 0 (25)
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If we multiply by −→v T
1 we find,

−2−→v T
1 A
−→x + 2−→v T

1 λ1
−→x + λ2

−→v T
1
−→v 1 = 0 (26)

−2−→v T
1 A
−→x + 2λ1

−→v T
1
−→x + λ2||−→v 1|| = 0 (27)

The middle term becomes zero as a result of our conditions. Additionally,
||−→v 1|| = 1. So,

−2−→v T
1 A
−→x + λ2 = 0 (28)

λ2 = 2−→v T
1 A
−→x (29)

And by the properties of inner product,

λ2 = 2〈−→v 1, A
−→x 〉 = 2〈A−→x ,−→v 1〉 = 2−→x TAT−→v 1 = 2−→x TA−→v 1 (30)

And furthermore, from the previous part, A−→v 1 = µ1
−→v 1. Additionally, using

〈−→x ,−→v 1〉 = 0, we have,

λ2 = 2−→x TA−→v 1 = 2µ1
−→x T−→v 1 = 0 (31)

The Lagrangian then reduces to,

Lλ1,λ2(−→x ,−→v , λ1, λ2)

∂−→x
= −2A−→x + 2λ1

−→x = 0 (32)

And as before, we have,

A−→x = λ1
−→x (33)

Though this time, we label the eigenvalue, eigenvector pair as (µ2,
−→v 2).
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(c) We now consider the optimization problem

maximize −→x TA−→x subject to ||−→x || = 1 and 〈−→x ,−→v 1〉 = 〈−→x ,−→v 2〉 = 0

Again, this problem admits a solution that we denote by −→v 3. Show
that −→v 3 is an eigenvector of A that is orthogonal to −→v 1 and −→v 2.

Again, we wish to minimize−−→x TA−→x (which is equivalent to maximizing−→x TA−→x )
under the constraints that ||−→x || = 1, and 〈−→x ,−→v 1〉 = 〈−→x ,−→v 2〉 = 0. Then, by use
of Lagrange multipliers, we have,

Lλi
(−→x ,−→v 1,

−→v 2, λi) = −−→x TA−→x + λ1(−→x T−→x − 1) + λ2
−→x T−→v 1

+ λ3
−→x T−→v 2

(34)

Then, we have,

Lλi
(−→x ,−→v 1,

−→v 2, λi)

∂−→x
= −2A−→x + 2λ1

−→x + λ2
−→v 1 + λ3

−→v 2 = 0 (35)

If we multiply by −→v T
1 we find,

−2−→v T
1 A
−→x + 2λ1

−→v T
1
−→x + λ2

−→v T
1
−→v 1 + λ3

−→v T
1
−→v 2 = 0 (36)

The second and last terms become zero as a result of our conditions. Addition-
ally, ||−→v 1|| = 1, so,

−2−→v T
1 A
−→x + λ2 = 0 (37)

Then we find the exact same problem encountered at the end of the previous
problem, resulting in λ2 = 0. Rewriting the Lagrangian yields,

Lλi
(−→x ,−→v 1,

−→v 2, λi)

∂−→x
= −2A−→x + 2λ1

−→x + λ3
−→v 2 = 0 (38)
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Where now the problem is the same as the Lagrangian from the previous ques-
tion. It is trivial to see that multiplying by −→v T

2 would yield that λ3 = 0. Then,
finally, we are left with,

A−→x = λ1
−→x (39)

Though this time, we label the eigenvalue, eigenvector pair as (µ3,
−→v 3).
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