DS-GA 1014 - Homework 11

Eric Niblock

November 21st, 2020

1. (2 points). Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be the functions defined by

$$
f(x, y, z) = 2x2 + y2 + \frac{1}{2}z2 + 4x - 6y - z + 1
$$
 (1)

$$
g(x, y, z) = -xyz + x + y + z \tag{2}
$$

Compute the critical points of f and g and determine if they are global/local maximizers/minimizers or saddle points.

Concerning f , we have,

$$
\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \begin{bmatrix} 4x + 4 \\ 2y - 6 \\ z - 1 \end{bmatrix}
$$
 (3)

Setting $\nabla f = 0$ implies that a critical point occurs at $(x, y, z) = (-1, 3, 1)$. Furthermore, the Hessian, H_f is given by,

$$
H_f = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix} = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}
$$
(4)

Since H_f is a diagonal matrix, the eigenvalues can be read directly from the diagonal. All of the eigenvalues are strictly positive implying that the critical point $(x, y, z) = (-1, 3, 1)$ is a local minimum. Upon further inspection of the gradient, we realize this is also a global minimum.

Concerning g , we have,

$$
\nabla g = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \\ \frac{\partial f}{\partial z} \end{bmatrix} = \begin{bmatrix} -yz + 1 \\ -xz + 1 \\ -xy + 1 \end{bmatrix} \tag{5}
$$

Setting $\nabla g = 0$ implies that a critical point occurs when $(x, y, z) = (1, 1, 1)$ and when $(x, y, z) = (-1, -1, -1)$. Furthermore, the Hessian, H_g is given by,

$$
H_g = \begin{bmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} & \frac{\partial^2 f}{\partial x \partial z} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y \partial y} & \frac{\partial^2 f}{\partial y \partial z} \\ \frac{\partial^2 f}{\partial z \partial x} & \frac{\partial^2 f}{\partial z \partial y} & \frac{\partial^2 f}{\partial z^2} \end{bmatrix} = \begin{bmatrix} 0 & -z & -y \\ -z & 0 & -x \\ -y & -x & 0 \end{bmatrix}
$$
(6)

Then our critical points have the associated Hessians,

$$
H_g(1,1,1) = \begin{bmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \quad H_g(-1,-1,-1) = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \tag{7}
$$

The critical point $H_g(1,1,1)$ has eigenvalues $\lambda_2 = -2$ and $\lambda_{1,3} = 1$, and is therefore a saddle point. The critical point $H_g(-1, -1, -1)$ has eigenvalues $\lambda_{1,2} = -1$ and $\lambda_3 = 2$, and is therefore a saddle point.

2. (3 points). We consider the following constrained optimization problem:

minimize
$$
x - y + z
$$
 subject to $x^2 + y^2 + z^2 = 1$ and $x + y + z = 1$

We admit that this minimization problem has (at least) one solution (this comes from the fact that a continuous function on a compact set attains its minimum). Using Lagrange multipliers, show that the minimization problem has a unique solution and compute its coordinates.

We have the following general formula for the Lagrangian concerning our problem,

$$
\mathcal{L}_{\lambda_1,\lambda_2}(x,y,z,\lambda_1,\lambda_2) = f(x,y,z) + \lambda_1 g_1(x,y,z) + \lambda_2 g_2(x,y,z)
$$
\n
$$
(8)
$$

Where f represents the function that is to be minimized, and g_1 and g_2 represent the constraints. Then,

$$
\mathcal{L}_{\lambda_1,\lambda_2}(x,y,z,\lambda_1,\lambda_2) = x - y + z + \lambda_1(x^2 + y^2 + z^2 - 1) + \lambda_2(x + y + z - 1) \tag{9}
$$

Then, $\nabla \mathcal{L}$ provides us with a set of equations to be solved simultaneously,

$$
\frac{\partial \mathcal{L}}{\partial x} = 1 + 2\lambda_1 x + \lambda_2 = 0 \implies x = \frac{-1 - \lambda_2}{2\lambda_1} \tag{10}
$$

$$
\frac{\partial \mathcal{L}}{\partial y} = -1 + 2\lambda_1 y + \lambda_2 = 0 \implies y = \frac{1 - \lambda_2}{2\lambda_1} \tag{11}
$$

$$
\frac{\partial \mathcal{L}}{\partial z} = 1 + 2\lambda_1 z + \lambda_2 = 0 \implies z = \frac{-1 - \lambda_2}{2\lambda_1} \implies x = z \tag{12}
$$

$$
\frac{\partial \mathcal{L}}{\partial \lambda_1} = x^2 + y^2 + z^2 - 1 = 0 \tag{13}
$$

$$
\frac{\partial \mathcal{L}}{\partial \lambda_2} = x + y + z - 1 = 0 \tag{14}
$$

Then we have,

$$
x + y + z = 1 \implies 2\left(\frac{-1 - \lambda_2}{2\lambda_1}\right) + \frac{1 - \lambda_2}{2\lambda_1} = 1 \implies \lambda_1 = \frac{-3\lambda_2 - 1}{2} \tag{15}
$$

$$
x^{2} + y^{2} + z^{2} = 1 \implies 2\left(\frac{-1 - \lambda_{2}}{2\lambda_{1}}\right)^{2} + \left(\frac{1 - \lambda_{2}}{2\lambda_{1}}\right)^{2} = 1 \implies \lambda_{2} = \frac{-1 \pm 2}{3}
$$
 (16)

And knowing the values of λ_1 and λ_2 implies that we have two sets of possible values in terms of coordinates: $(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$ and $(0, 1, 0)$. Both of these sets of coordinates satisfy the constraint equations, it simply remains to be seem which provides a lower functional value for f .

$$
f(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3}) = \frac{5}{3}
$$
 (17)

$$
f(0,1,0) = -1 \tag{18}
$$

Therefore $(x, y, z) = (0, 1, 0)$ corresponds to the minimum of f which satisfies the constraint equations.

3. (2 points). Let $\vec{u} \in \mathbb{R}^n$ be a vector such that for all $i \neq j, |\vec{u}_i| \neq |\vec{u}_j|$. We consider the constrained optimization problem,

 $\text{maximize} \quad \langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{x}} \rangle \quad \text{subject to} \quad ||\overrightarrow{\mathbf{x}}||_1 \leq 1$

(a) Show that this problem has a unique solution \vec{x}^* and give the expresshow that this pressum has a dingle sendom in this give the supplestion of \vec{x}^* in terms of \vec{u} (Lagrange multipliers are not needed here).

We first note that maximizing $\langle \vec{\mathbf{u}}, \vec{\mathbf{x}} \rangle$ is equivalent to maximizing $u_1x_1 + ...$ u_nx_n . Furthermore, we know that $||\vec{x}||_1 \leq 1$ is equivalent to $|x_1| + ... + |x_n| \leq 1$. We then have that,

$$
\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{x}} \rangle = u_1 x_1 + \dots + u_n x_n
$$

\n
$$
\leq |u_1||x_1| + \dots + |u_n||x_n|
$$
\n(19)

Then we define some i^* such that for all $j \in \{1, ..., n\}$ we have $|u_i^*| \ge |u_j|$. Then, we have that every for every u_j we can write the expression $|u_j| = |u_i^*| - \alpha_j$ such that $\alpha_j \geq 0$. Then, continuing from above, we have,

$$
\langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{x}} \rangle = u_1 x_1 + \dots + u_n x_n
$$

\n
$$
\leq |u_1| \cdot |x_1| + \dots + |u_n| \cdot |x_n|
$$

\n
$$
= |x_1| \cdot (|u_i^*| - \alpha_1) + \dots + |x_n| \cdot (|u_i^*| - \alpha_n)
$$

\n
$$
= |u_i^*| \cdot ||\overrightarrow{\mathbf{x}}||_1 - \sum_{i^* \neq j}^n \alpha_j \cdot |x_j|
$$

\n
$$
\leq \langle \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{x}}_i^* \rangle
$$
\n(20)

Thus this shows that the solution is given by $\vec{\mathbf{x}}^* = \vec{\mathbf{x}}_i^*$, that is a zector of all zeros except for the i^* location, which is populated with ± 1 (the same sign of u_i^*). Suppose is is not the case that $\overrightarrow{x}^* = \overrightarrow{x}_i^*$, but instead $\overrightarrow{x}^* = \overrightarrow{x}$. If $\overrightarrow{x}^* = \overrightarrow{x}$, then one possibility is that for some $i \neq i^*$, $x_i \neq 0$. If this is the case, then we see by the inequality that the expression is reduced by the corresponding term within the summation, and thus cannot produce the maximum $\langle \overrightarrow{u}, \overrightarrow{x_i} \rangle$. Thus, we have shown that $\langle \vec{u}, \vec{x} \rangle$ is maximized when $\vec{x}^* = \vec{x}_i^*$, as defined above.

(b) Give a graphical interpretation.

Observe the following graphic and explanation,

The graphic displays the canonical axes in \mathbb{R}^2 . In red, the boundaries of the ℓ_1 norm are shown, and in blue a random vector $\vec{u} \in \mathbb{R}^2$ has been chosen. Furthermore, here we have shown the optimal solution for our choice of \vec{x} , given in black. Note that $\langle \overrightarrow{u}, \overrightarrow{x} \rangle$ would result in a vector lying along \overrightarrow{u} , and ending where the green vector intersects \vec{u} . It is clear that no other \vec{x} can be drawn such that it falls within or upon the boundary given in red, and fosters a larger vector on \vec{u} . In fact, it is clear that if we rotate \vec{u} by 30 degrees counter-clockwise, \vec{x} would snap to the vertical canonical axis, in order to produce the largest inner product. A similar process occurs in higher dimensions, thus, the optimal \vec{x} always lies in the direction of one of the canonical axes, which corresponds to the component of \vec{u} that has the greatest magnitude.

4. (3 points). We will prove the spectral theorem in this problem: you are therefore not allowed to use the spectral theorem and its consequences to solve this exercise.

Let A be an $n \times n$ symmetric matrix. We consider the following optimization problem,

> $maximize$ $T A \vec{x}$ subject to \vec{x} || = 1

This optimization problem admits a solution (this comes from the fact that a continuous function on a compact set achieved its maximum) that we denote by \vec{v}_1 .

(a) Using Lagrange multipliers, show that \vec{v}_1 is an eigenvector of A.

We wish to minimize $-\vec{x}^T A \vec{x}$ (which is equivalent to maximizing $\vec{x}^T A \vec{x}$) under the constraint that $||\vec{x}|| = 1$. By use of Lagrange multipliers, we have that,

$$
\mathcal{L}_{\lambda_1}(\vec{\mathbf{x}}, \lambda_1) = -\vec{\mathbf{x}}^T A \vec{\mathbf{x}} + \lambda_1(\vec{\mathbf{x}}^T \vec{\mathbf{x}} - 1)
$$
 (21)

Then, we have that,

$$
\frac{\partial \mathcal{L}_{\lambda_1}(\vec{\mathbf{x}}, \lambda_1)}{\partial \vec{\mathbf{x}}} = -2A\vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{x}} = 0
$$
\n(22)

$$
A\overrightarrow{\mathbf{x}} = \lambda_1 \overrightarrow{\mathbf{x}} \tag{23}
$$

Which suffices to show that (λ_1, \vec{x}) is an eigenvalue, eigenvector pair (since . We will refer to this pair as (μ_1, \vec{v}_1) to avoid confusion in future parts.

(b) We now consider the optimization problem

 $maximize$ $^{T}A\overrightarrow{\mathbf{x}}$ subject to $\|\overrightarrow{\mathbf{x}}\| = 1$ and $\langle \overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{v}}_1 \rangle = 0$

For the same reason as above, this problem admits a solution that we denote by \vec{v}_2 . Show that \vec{v}_2 is an eigenvector of A that is orthogonal to $\overrightarrow{\mathbf{v}}_1$.

Again, we wish to minimize $-\vec{x}^T A \vec{x}$ (which is equivalent to maximizing $\vec{x}^T A \vec{x}$) under the constraints that $||\vec{x}|| = 1$, and $\langle \vec{x}, \vec{v}_1 \rangle = 0$. Then, by use of Lagrange multipliers, we have,

$$
\mathcal{L}_{\lambda_1, \lambda_2}(\vec{\mathbf{x}}, \vec{\mathbf{v}}_1, \lambda_1, \lambda_2) = -\vec{\mathbf{x}}^T A \vec{\mathbf{x}} + \lambda_1 (\vec{\mathbf{x}}^T \vec{\mathbf{x}} - 1) + \lambda_2 \vec{\mathbf{x}}^T \vec{\mathbf{v}}_1 \qquad (24)
$$

Then, we have that,

$$
\frac{\mathcal{L}_{\lambda_1,\lambda_2}(\vec{\mathbf{x}},\vec{\mathbf{v}}_1,\lambda_1,\lambda_2)}{\partial \vec{\mathbf{x}}} = -2A\vec{\mathbf{x}} + 2\lambda_1\vec{\mathbf{x}} + \lambda_2\vec{\mathbf{v}}_1 = 0
$$
\n(25)

If we multiply by $\overrightarrow{\mathbf{v}}_1^T$ we find,

$$
-2\vec{\mathbf{v}}_1^T A \vec{\mathbf{x}} + 2\vec{\mathbf{v}}_1^T \lambda_1 \vec{\mathbf{x}} + \lambda_2 \vec{\mathbf{v}}_1^T \vec{\mathbf{v}}_1 = 0
$$
 (26)

$$
-2\vec{\mathbf{v}}_1^T A \vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{v}}_1^T \vec{\mathbf{x}} + \lambda_2 ||\vec{\mathbf{v}}_1|| = 0
$$
 (27)

The middle term becomes zero as a result of our conditions. Additionally, $||\vec{v}_1|| = 1.$ So,

$$
-2\overrightarrow{\mathbf{v}}_1^T A \overrightarrow{\mathbf{x}} + \lambda_2 = 0 \tag{28}
$$

$$
\lambda_2 = 2\overrightarrow{\mathbf{v}}_1^T A \overrightarrow{\mathbf{x}} \tag{29}
$$

And by the properties of inner product,

$$
\lambda_2 = 2\langle \overrightarrow{\mathbf{v}}_1, A\overrightarrow{\mathbf{x}} \rangle = 2\langle A\overrightarrow{\mathbf{x}}, \overrightarrow{\mathbf{v}}_1 \rangle = 2\overrightarrow{\mathbf{x}}^T A^T \overrightarrow{\mathbf{v}}_1 = 2\overrightarrow{\mathbf{x}}^T A \overrightarrow{\mathbf{v}}_1
$$
 (30)

And furthermore, from the previous part, $A\vec{v}_1 = \mu_1 \vec{v}_1$. Additionally, using $\langle \vec{\mathbf{x}}, \vec{\mathbf{v}}_1 \rangle = 0$, we have,

$$
\lambda_2 = 2\overrightarrow{\mathbf{x}}^T A \overrightarrow{\mathbf{v}}_1 = 2\mu_1 \overrightarrow{\mathbf{x}}^T \overrightarrow{\mathbf{v}}_1 = 0
$$
\n(31)

The Lagrangian then reduces to,

$$
\frac{\mathcal{L}_{\lambda_1,\lambda_2}(\vec{\mathbf{x}},\vec{\mathbf{v}},\lambda_1,\lambda_2)}{\partial \vec{\mathbf{x}}} = -2A\vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{x}} = 0
$$
\n(32)

And as before, we have,

$$
A\overrightarrow{\mathbf{x}} = \lambda_1 \overrightarrow{\mathbf{x}} \tag{33}
$$

Though this time, we label the eigenvalue, eigenvector pair as (μ_2, \vec{v}_2) .

(c) We now consider the optimization problem

maximize
$$
\vec{\mathbf{x}}^T A \vec{\mathbf{x}}
$$
 subject to $||\vec{\mathbf{x}}|| = 1$ and $\langle \vec{\mathbf{x}}, \vec{\mathbf{v}}_1 \rangle = \langle \vec{\mathbf{x}}, \vec{\mathbf{v}}_2 \rangle = 0$

Again, this problem admits a solution that we denote by \overrightarrow{v}_3 . Show that \vec{v}_3 is an eigenvector of A that is orthogonal to \vec{v}_1 and \vec{v}_2 .

Again, we wish to minimize $-\vec{x}^T A \vec{x}$ (which is equivalent to maximizing $\vec{x}^T A \vec{x}$) under the constraints that $||\vec{x}|| = 1$, and $\langle \vec{x}, \vec{v}_1 \rangle = \langle \vec{x}, \vec{v}_2 \rangle = 0$. Then, by use of Lagrange multipliers, we have,

$$
\mathcal{L}_{\lambda_i}(\vec{\mathbf{x}}, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \lambda_i) = -\vec{\mathbf{x}}^T A \vec{\mathbf{x}} + \lambda_1 (\vec{\mathbf{x}}^T \vec{\mathbf{x}} - 1) + \lambda_2 \vec{\mathbf{x}}^T \vec{\mathbf{v}}_1 + \lambda_3 \vec{\mathbf{x}}^T \vec{\mathbf{v}}_2
$$
\n(34)

Then, we have,

$$
\frac{\mathcal{L}_{\lambda_i}(\vec{\mathbf{x}}, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \lambda_i)}{\partial \vec{\mathbf{x}}} = -2A\vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{x}} + \lambda_2 \vec{\mathbf{v}}_1 + \lambda_3 \vec{\mathbf{v}}_2 = 0 \tag{35}
$$

If we multiply by $\overrightarrow{\mathbf{v}}_1^T$ we find,

$$
-2\vec{\mathbf{v}}_1^T A \vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{v}}_1^T \vec{\mathbf{x}} + \lambda_2 \vec{\mathbf{v}}_1^T \vec{\mathbf{v}}_1 + \lambda_3 \vec{\mathbf{v}}_1^T \vec{\mathbf{v}}_2 = 0
$$
 (36)

The second and last terms become zero as a result of our conditions. Additionally, $||\vec{v}_1|| = 1$, so,

$$
-2\overrightarrow{\mathbf{v}}_1^T A \overrightarrow{\mathbf{x}} + \lambda_2 = 0 \tag{37}
$$

Then we find the exact same problem encountered at the end of the previous problem, resulting in $\lambda_2 = 0$. Rewriting the Lagrangian yields,

$$
\frac{\mathcal{L}_{\lambda_i}(\vec{\mathbf{x}}, \vec{\mathbf{v}}_1, \vec{\mathbf{v}}_2, \lambda_i)}{\partial \vec{\mathbf{x}}} = -2A\vec{\mathbf{x}} + 2\lambda_1 \vec{\mathbf{x}} + \lambda_3 \vec{\mathbf{v}}_2 = 0
$$
\n(38)

Where now the problem is the same as the Lagrangian from the previous question. It is trivial to see that multiplying by \vec{v}_2^T would yield that $\lambda_3 = 0$. Then, finally, we are left with,

$$
A\overrightarrow{\mathbf{x}} = \lambda_1 \overrightarrow{\mathbf{x}} \tag{39}
$$

Though this time, we label the eigenvalue, eigenvector pair as (μ_3, \vec{v}_3) .