DS-GA 1014 - Homework 12

Eric Niblock
December 7th, 2020

1. (2 points). The following plot shows the contour lines of a function f :

R? — R.

b
[

(a) Give (approximately) the coordinates of the global/local minimizers/maximizers,
saddle points of f.

Here are the following critical points of f:

Global Maximizer: ~ (-2, —2)

e Local Maximizers: ~ (—%, —%); ~ (g, g)

Global Minimizer: ~ (%, _%)

e Local Minimizers: ~ (%,—); o~ (=

Saddle Point: ~ (3,0)

(b) Assume that we run gradient descent to minimize f. Will gradient
descent converge to the global minimizer of f when initialized at point
A? At point B?

When beginning at point A, gradient descent will not converge to the global min-

imizer, but instead to the local minimizer at ~ (—Z, 2).

When beginning at point B, gradient descent will converge to the global mini-

mizer at ~ (3,-3).

%
2. (5 points). Let M € IRY*d be a positive semidefinite matrix, b € RY and
c € IR. We aim at minimizing the quadratic function

F(R) = 1XTME — (X.B) +c

using gradient descent. We assume that M is positive definite (i.e. all its
eigenvalues are positive). We let A\; > Xy > ... > Ay > 0 be its eigenvalues
and let 71, ...,7d be an orthonormal basis of IRY consisting of associated
eigenvectors (le =\, ¥, for all i). We write L = A\; and = \,.

We consider standard gradient descent with constant step-size f3:
?H»l =X - 5Vf(?t)
%
(a) Show that f is L-smooth, u-strongly convex and that X*=M"1b is

the unique minimizer of f.

We have that,

ViR)=-(M+M)X - (1)

DN | =

(b)

Hy(R) = S(M7 + M) @)

And since this Hessian is independent of X, there is some constant Apqq (H 7(z))
associated with f, which makes it obvious that we can find some L such that
Amaz(Hy(2x)) < L. This shows that f is L-smooth. By the same argument, it is
obvious that we can find some p such that Ap,in(Hy¢(2)) > p. This shows that f
is p-strongly convex.

Now, we know that M is symmetric (because it is assumed to be positive definite)
which yields,

VIR)=MX - b (3)

And since we know that f (?) is at least convex, this implies that there exists a
minimum. Setting the gradient equal to zero, we find,

X = M'b (4)

Where we know that M is invertible, again, because it is assumed to be positive
definite, and positive definite matrices are invertible.

‘We now study the convergence of gradient descent to X*. Show that
for all t > 0,

K1 — X*=(Id—BM)(X¢ — X*)

This follows readily by simplification,

?t—i-l - ?* = ?t - BVf(?t) - ?*
:?t—ﬁ(M?t—ﬁ) —X*
—R, -3 (M?t - MM—lﬁ) R 5)
=X - B(MX, - MX*) - X*
=X, - X*—BMX, +BMX*
= (Id— BM)(X, - X*)

(c) From now, we set 3 = 1. Deduce from the previous question that for
allt >0,

1R =R < (1=)[R0 = X7
We have that,
Xy — X" = (Id—BM)(X, — X*) (6)

Then we can form the closed-solution,

X1 — X" =(Id—BM)(Xg—X")
Xy — X" =(Id— BM)?*(Xg—X")

| 7)
X, — X" = (Id— M) (Xo— X*)
Then we can apply the norm to each side,
1%, = X[= [|(Id — M) (X — X7 (8)

We have shown previously that ||[AX|| < ||A|sp||X]||. In our case, this means,
1% = X" = [|(Id = BM)" (Ko — X)|| < [|(Id = BM)[[sp [|(Xo = X7)| (9)

We also know that the eigenvalues of M are L = Ay > Ay > ... > Ay = p. There-
fore the eigenvalues of (Id — SM)" are given by, 0 < ... < (1 — £)*. Since all of
the eigenvalues are non-zero, the spectral norm will just be the largest eigenvalue
of (Id — BM)t. Therefore, we have that,

[Re =% = [|(1d = BM) (Ko =)| < (1= D [(Ro =X (10)

%=X < (1= D) IR0 = %) (1)

(d) We would like now to have something more precise than the error
bound of the previous question. We define Wy def X, — X*. Let,

a1 (t) = (V1, W), oy agt) = (Va, Wy)
be the coordinates of v_v>t in the orthonormal basis (71,...,7(1). For
i€{l,...,d}, express «;(t) in terms of ¢, \;, L and «;(0).

Since we have that,

a;i(t) = (¥, Ry — X¥) (12)

It is clear that (o (t), ..., aq(t)) are the coordinates of W, in the orthonormal

basis of (717 ..y V4). Furthermore, we have,
al(t) al(o)
W, = =(Id-pM)t| : | =(Id-BM)'W, (13)
aq(t) aq(0)

Which implies that,

() V14 +ag() Vg = a1 (0)(Id— BM) V1 + ...+ ag(0)(Id— BM) V4 (14)

_ ﬁ)t71 + ..+ ag(0)(1 — %)tvd (15)

(D) V1+ ..+ ag(t) Vg = ar (0)(1 T

Therefore,

a1 (t) ar(0)(1 —)
V_V>t = : = : (16)
aq(t) aq(0)(1 — 34)t

By the uniqueness of coordinates in a basis (?1, e Vd). So, in general, we have
that,

(e) Using the previous question, justify the following sentence:

“Gradient descent converges towards the minimizer faster in direc-
tions given by the eigenvectors of the Hessian of f corresponding to
large eigenvalues than in directions corresponding to eigenvectors with
small eigenvalues”

We know that Ay > Ay > ... > Ay and that,

ay(t) ar(0)(1 - 34)*
Otd(t) ad(())(l - %)t
Furthermore since,
A1 Ad
<l—-—<..<1——X<1 1
0<1-F <. <1-F< (19)
A t Ay t
<(1-2) <. <(1-22) <

0<(1-2) s.<(1-3) < (20)

Or, in other words,

Which suggests that as ¢ increases, «;(t) updates more drastically that as(t),
which updates more drastically than as(t), Therefore, the statement has
been shown.

(f) Show that for all ¢t >0

1% -1 = |30 (1-F) (FaRo- %2 (22)

i=1

We know that,

1% = X" = |||

I
£
S

no
—

=

|

]2
~—

8

(23)

Which is what we hoped to show.

3. (3 points). In this problem, you will implement and compare gradient de-
scent with or without momentum to minimize the Ridge cost function.

The corresponding PDF is attached.

12/12/2020 gradient_descent - Jupyter Notebook

In [2]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rc('font',family="serif")

In [3]: d=1000 # d: dimension
n=2000 # n: number of points
A = np.random.normal(size=(n,d)) / np.sqrt(n) # matrix containing the data point:
y = np.random.normal(size=n)
lambd = 1
I = np.identity(d)

We consider the Ridge cost function:
1 2 A 2
x) = —||Ax — + —||x]||*,
)= ZllAx =y + Zlix]

where A > (is some regularization parameter that we take equal to 1. The matrix A and the
vector y are defined in the cell above.

(a) Show that f is can be written in the format the function f of Problem 12.2, for some

M e R™ peR%andc € R. Compute numerically the values of L and u. Plot the
eigenvalues of H (x) using an histogram.

We can write f(x) in the form of f(x) = %xTMx — (x, b) + c. Observe the following,

1 A
= _|lAx = v|I? + Z 2
I gixyu+ymu
)= ST AT =y) (Ax = y) + 2T
|
f(x) = E(XTATAX — V' Ax = xTATy +y"y) + %xTx

1
f(x) = E(xTATAx —2xTATy +yTy) + %xrx
T

1
f(x) = ExT(ATA + Ad)x —x"ATy + %
1 T

fx) = Zx! (ATA + Ald)x = (x, ATy) + %

Thenweseethat M = ATA+ Ald, b= ATy, c = %

localhost:8888/notebooks/gradient_descent.ipynb 117

12/12/2020 gradient_descent - Jupyter Notebook

In [27]: H = A.T@A + lambd*I
vals,vect = np.linalg.eigh(H)
L = np.max(vals)
u = np.min(vals)
plt.figure(figsize=(10,10))
plt.hist(vals, bins=30)[2]
plt.title('Histogram of the Eigenvalues of H')
plt.xlabel('Value of Eigenvalues')
plt.ylabel('Frequency')

Out[27]: Text(@, 0.5, 'Frequency')

Histogram of the Eigenvalues of H

Frequency

25
‘Value of Eigenvalues

localhost:8888/notebooks/gradient_descent.ipynb 217

12/12/2020 gradient_descent - Jupyter Notebook

(b) Implement gradient descent with constant step-size f = 1/L (as in Problem 12.2), with
random initial position x,. Plot the log-error log(||x; — x..||) as a function of 7.

localhost:8888/notebooks/gradient_descent.ipynb 3/7

12/12/2020

In [24]:

out[24]:

gradient_descent - Jupyter Notebook

steps = []
logerror = []
X = np.random.normal(size=d)
xmin = np.linalg.inv(H)@A.T@y
for i in range(120):
x = x - ((1/L)*(H@x - A.T@y))
steps.append(i)

logerror.append(np.log(np.linalg.norm(x-xmin)))

plt.figure(figsize=(10,10))
plt.plot(steps,logerror)
plt.xlabel('Steps")
plt.ylabel('Log Error')

plt.title('Gradient Descent Error as a Function of Steps')

Text(0.5, 1.9, 'Gradient Descent Error as a Function of Steps')

Gradient Descent Error as a Function of Steps

—10 4

Log Error

Steps

100

120

(c) Implement gradient descent with momentum, with the same parameters as in Problem 12.4.

Plot the log-error log(||x; — x.||) as a function of ¢, on the same plot than the log-error of gradient
descent without momentum. On the same plot, plot also the lines of equation

localhost:8888/notebooks/gradient_descent.ipynb

417

12/12/2020 gradient_descent - Jupyter Notebook
\/L \/ H >
VEL+\/E

y=log(l —u/L)xt and = log <

localhost:8888/notebooks/gradient_descent.ipynb 517

12/12/2020 gradient_descent - Jupyter Notebook

In [25]: steps_log = []
logerror_log = []
X = np.random.normal(size=d)
xmin = np.linalg.inv(H)@A.T@y
xold = x
beta = 4/(((L**0.5)+(u**0.5))**2)
gamma = (((L**0.5)-(u**0.5))/((L**0.5)+(u**0.5)))**2
for i in range(120):
temp = x - beta*(H@x - A.T@y) + gamma*(x - xold)
xold=x
x=temp
steps_log.append(i)
logerror_log.append(np.log(np.linalg.norm(x-xmin)))
plt.figure(figsize=(10,10))
plt.plot(steps_log[:50],logerror_log[:50], c='r', label='GD, with Momentum')
plt.plot(steps,logerror, c='k',label="GD")
plt.plot(steps_log, np.log(1l-(u/L))*np.array(steps_log), 'k--',label="GD Bound")
plt.plot(steps_log[:50], np.log(((L**0.5)-(u**0.5))/((L**0.5)+(u**0.5)))*np.array
, 'r--',label="GD, with Momentum Bound")
plt.xlabel('Steps")
plt.ylabel('Log Error')
plt.title('Gradient Descent with Momentum Error as a Function of Steps')
plt.legend()

Out[25]: <matplotlib.legend.Legend at ©x12558e8f860>

localhost:8888/notebooks/gradient_descent.ipynb 6/7

12/12/2020 gradient_descent - Jupyter Notebook

Gradient Descent with Momentum Error as a Function of Steps

= GO, with Momentum
—_— GO
o === GO Bound
‘; === G0, with Momentum Bound
—10
—20
| ¥}
a
=
[£1]
m
3 -30 4
_40 -
—50 4
—&50 4
T T T T T T T
o 20 40 60 a0 100 120
Steps

localhost:8888/notebooks/gradient_descent.ipynb 77

