
DS-GA 1014 - Homework 12

Eric Niblock

December 7th, 2020

1. (2 points). The following plot shows the contour lines of a function f :
IR2 → IR.

(a) Give (approximately) the coordinates of the global/local minimizers/maximizers,
saddle points of f .

Here are the following critical points of f :

1

• Global Maximizer: ∼ (− 2
3 ,−

2
3)

• Local Maximizers: ∼ (− 2
3 ,−

2
3); ∼ (5

4 ,
5
4)

• Global Minimizer: ∼ (4
5 ,−

5
4)

• Local Minimizers: ∼ (4
5 ,−

5
4); ∼ (− 7

8 ,
2
3)

• Saddle Point: ∼ (1
2 , 0)

(b) Assume that we run gradient descent to minimize f . Will gradient
descent converge to the global minimizer of f when initialized at point
A? At point B?

When beginning at point A, gradient descent will not converge to the global min-
imizer, but instead to the local minimizer at ∼ (− 7

8 ,
2
3).

When beginning at point B, gradient descent will converge to the global mini-
mizer at ∼ (4

5 ,−
5
4).

2. (5 points). Let M ∈ IRd×d be a positive semidefinite matrix,
−→
b ∈ IRd and

c ∈ IR. We aim at minimizing the quadratic function

f(−→x) = 1
2
−→x TM−→x − 〈−→x ,

−→
b 〉+ c

using gradient descent. We assume that M is positive definite (i.e. all its
eigenvalues are positive). We let λ1 ≥ λ2 ≥ ... ≥ λd > 0 be its eigenvalues
and let −→v 1, ...,

−→v d be an orthonormal basis of IRd consisting of associated
eigenvectors (M−→v i = λi

−→v i for all i). We write L = λ1 and = λd.

We consider standard gradient descent with constant step-size β:

−→x t+1 = −→x t − β∇f(−→x t)

(a) Show that f is L-smooth, µ-strongly convex and that −→x ∗ = M−1−→b is
the unique minimizer of f .

We have that,

∇f(−→x) =
1

2

(
M +MT

)−→x −−→b (1)

2

Hf (−→x) =
1

2
(MT +M) (2)

And since this Hessian is independent of −→x , there is some constant λmax(Hf (x))
associated with f , which makes it obvious that we can find some L such that
λmax(Hf (x)) ≤ L. This shows that f is L-smooth. By the same argument, it is
obvious that we can find some µ such that λmin(Hf (x)) ≥ µ. This shows that f
is µ-strongly convex.

Now, we know that M is symmetric (because it is assumed to be positive definite)
which yields,

∇f(−→x) = M−→x −
−→
b (3)

And since we know that f(−→x) is at least convex, this implies that there exists a
minimum. Setting the gradient equal to zero, we find,

−→x ∗ = M−1−→b (4)

Where we know that M is invertible, again, because it is assumed to be positive
definite, and positive definite matrices are invertible.

(b) We now study the convergence of gradient descent to −→x ∗. Show that
for all t ≥ 0,

−→x t+1 −−→x ∗ = (Id− βM)(−→x t −−→x ∗)

This follows readily by simplification,

−→x t+1 −−→x ∗ = −→x t − β∇f(−→x t)−−→x ∗

= −→x t − β
(
M−→x t −

−→
b
)
−−→x ∗

= −→x t − β
(
M−→x t −MM−1−→b

)
−−→x ∗

= −→x t − β
(
M−→x t −M−→x ∗)−−→x ∗

= −→x t −−→x ∗ − βM−→x t + βM−→x ∗

= (Id− βM)(−→x t −−→x ∗)

(5)

3

(c) From now, we set β = 1
L . Deduce from the previous question that for

all t ≥ 0,

||−→x t −−→x ∗|| ≤
(
1− µ

L

)t ||−→x 0 −−→x ∗||

We have that,

−→x t+1 −−→x ∗ = (Id− βM)(−→x t −−→x ∗) (6)

Then we can form the closed-solution,

−→x 1 −−→x ∗ = (Id− βM)(−→x 0 −−→x ∗)
−→x 2 −−→x ∗ = (Id− βM)2(−→x 0 −−→x ∗)

...
−→x t −−→x ∗ = (Id− βM)t(−→x 0 −−→x ∗)

(7)

Then we can apply the norm to each side,

||−→x t −−→x ∗|| = ||(Id− βM)t(−→x 0 −−→x ∗)|| (8)

We have shown previously that ||A−→x || ≤ ||A||Sp||−→x ||. In our case, this means,

||−→x t −−→x ∗|| = ||(Id− βM)t(−→x 0 −−→x ∗)|| ≤ ||(Id− βM)t||Sp ||(−→x 0 −−→x ∗)|| (9)

We also know that the eigenvalues of M are L = λ1 ≥ λ2 ≥ ... ≥ λd = µ. There-
fore the eigenvalues of (Id − βM)t are given by, 0 ≤ ... ≤ (1 − µ

L)t. Since all of
the eigenvalues are non-zero, the spectral norm will just be the largest eigenvalue
of (Id− βM)t. Therefore, we have that,

4

||−→x t −−→x ∗|| = ||(Id− βM)t(−→x 0 −−→x ∗)|| ≤ (1− µ

L
)t ||(−→x 0 −−→x ∗)|| (10)

||−→x t −−→x ∗|| ≤ (1− µ

L
)t ||(−→x 0 −−→x ∗)|| (11)

(d) We would like now to have something more precise than the error

bound of the previous question. We define −→wt
def
= −→x t −−→x ∗. Let,

α1(t) = 〈−→v 1,
−→wt〉, ..., αd(t) = 〈−→v d,

−→wt〉

be the coordinates of −→wt in the orthonormal basis (−→v 1, ...,
−→v d). For

i ∈ {1, ..., d}, express αi(t) in terms of t, λi, L and αi(0).

Since we have that,

αi(t) = 〈−→v i,
−→x t −−→x ∗〉 (12)

It is clear that (α1(t), ..., αd(t)) are the coordinates of −→wt in the orthonormal
basis of (−→v 1, ...,

−→v d). Furthermore, we have,

−→wt =

α1(t)
...

αd(t)

 = (Id− βM)t

α1(0)
...

αd(0)

 = (Id− βM)t−→w0 (13)

Which implies that,

α1(t)−→v 1 + ...+αd(t)
−→v d = α1(0)(Id−βM)t−→v 1 + ...+αd(0)(Id−βM)t−→v d (14)

α1(t)−→v 1 + ...+ αd(t)
−→v d = α1(0)(1− λ1

L
)t−→v 1 + ...+ αd(0)(1− λd

L
)t−→v d (15)

Therefore,

5

−→wt =

α1(t)
...

αd(t)

 =

α1(0)(1− λ1

L)t

...

αd(0)(1− λd

L)t

 (16)

By the uniqueness of coordinates in a basis (−→v 1, ...,
−→v d). So, in general, we have

that,

αi(t) = αi(0)(1− λi
L

)t (17)

(e) Using the previous question, justify the following sentence:

“Gradient descent converges towards the minimizer faster in direc-
tions given by the eigenvectors of the Hessian of f corresponding to
large eigenvalues than in directions corresponding to eigenvectors with
small eigenvalues”

We know that λ1 ≥ λ2 ≥ ... ≥ λd and that,

−→wt = −→x t −−→x ∗ =

α1(t)
...

αd(t)

 =

α1(0)(1− λ1

L)t

...

αd(0)(1− λd

L)t

 (18)

Furthermore since,

0 ≤ 1− λ1
L
≤ ... ≤ 1− λd

L
≤ 1 (19)

0 ≤
(

1− λ1
L

)t
≤ ... ≤

(
1− λd

L

)t
≤ 1 (20)

Or, in other words,

∣∣∣∣∣ ∂∂t
(

1− λ1
L

)t∣∣∣∣∣ ≥ ... ≥
∣∣∣∣∣ ∂∂t

(
1− λd

L

)t∣∣∣∣∣ (21)

6

Which suggests that as t increases, α1(t) updates more drastically that α2(t),
which updates more drastically than α3(t), Therefore, the statement has
been shown.

(f) Show that for all t ≥ 0

||−→x t −−→x ∗|| =

√√√√ d∑
i=1

(
1− λi

L

)2t

〈−→v i,
−→x 0 −−→x ∗〉2 (22)

We know that,

||−→x t −−→x ∗|| = ||−→wt|| =

√√√√ d∑
i=1

αi(0)2(1− λi
L

)2t

=

√√√√ d∑
i=1

(1− λi
L

)2t〈−→v i,
−→x 0 −−→x ∗〉2

(23)

Which is what we hoped to show.

3. (3 points). In this problem, you will implement and compare gradient de-
scent with or without momentum to minimize the Ridge cost function.

The corresponding PDF is attached.

7

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 1/7

In [2]:

In [3]:

We consider the Ridge cost function:

where is some regularization parameter that we take equal to . The matrix and the
vector are defined in the cell above.

𝑓(𝑥) = ‖𝐴𝑥 − 𝑦 + ‖𝑥 ,
1

2
‖2

𝜆

2
‖2

𝜆 > 0 1 𝐴

𝑦

(a) Show that is can be written in the format the function of Problem 12.2, for some
, and . Compute numerically the values of and . Plot the

eigenvalues of using an histogram.

𝑓 𝑓

𝑀 ∈ ℝ𝑑×𝑑 𝑏 ∈ ℝ𝑑 𝑐 ∈ ℝ 𝐿 𝜇

(𝑥)𝐻𝑓

We can write in the form of + c. Observe the following,

Then we see that , ,

𝑓(𝑥) 𝑓(𝑥) = 𝑀𝑥 − ⟨𝑥, 𝑏⟩1

2
𝑥𝑇

𝑓(𝑥) = ‖𝐴𝑥 − 𝑦 + ‖𝑥
1

2
‖2

𝜆

2
‖2

𝑓(𝑥) = (−)(𝐴𝑥 − 𝑦) + 𝑥
1

2
𝑥𝑇𝐴𝑇 𝑦𝑇

𝜆

2
𝑥𝑇

𝑓(𝑥) = (𝐴𝑥 − 𝐴𝑥 − 𝑦 + 𝑦) + 𝑥
1

2
𝑥𝑇𝐴𝑇 𝑦𝑇 𝑥𝑇𝐴𝑇 𝑦𝑇

𝜆

2
𝑥𝑇

𝑓(𝑥) = (𝐴𝑥 − 2 𝑦 + 𝑦) + 𝑥
1

2
𝑥𝑇𝐴𝑇 𝑥𝑇𝐴𝑇 𝑦𝑇

𝜆

2
𝑥𝑇

𝑓(𝑥) = (𝐴 + 𝜆𝐼𝑑)𝑥 − 𝑦 +
1

2
𝑥𝑇 𝐴𝑇 𝑥𝑇𝐴𝑇

𝑦𝑦𝑇

2

𝑓(𝑥) = (𝐴 + 𝜆𝐼𝑑)𝑥 − ⟨𝑥, 𝑦⟩ +
1

2
𝑥𝑇 𝐴𝑇 𝐴𝑇

𝑦𝑦𝑇

2

𝑀 = 𝐴 + 𝜆𝐼𝑑𝐴𝑇 𝑏 = 𝑦𝐴𝑇 𝑐 =
𝑦𝑦𝑇

2

%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
plt.rc('font',family='serif')

d=1000 # d: dimension
n=2000 # n: number of points
A = np.random.normal(size=(n,d)) / np.sqrt(n) # matrix containing the data points
y = np.random.normal(size=n)
lambd = 1
I = np.identity(d)

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 2/7

In [27]:

Out[27]: Text(0, 0.5, 'Frequency')

H = A.T@A + lambd*I
vals,vect = np.linalg.eigh(H)
L = np.max(vals)
u = np.min(vals)
plt.figure(figsize=(10,10))
plt.hist(vals, bins=30)[2]
plt.title('Histogram of the Eigenvalues of H')
plt.xlabel('Value of Eigenvalues')
plt.ylabel('Frequency')

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 3/7

(b) Implement gradient descent with constant step-size (as in Problem 12.2), with
random initial position . Plot the log-error as a function of .

𝛽 = 1/𝐿

𝑥0 log(‖ − ‖)𝑥𝑡 𝑥∗ 𝑡

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 4/7

In [24]:

(c) Implement gradient descent with momentum, with the same parameters as in Problem 12.4.
Plot the log-error as a function of , on the same plot than the log-error of gradient
descent without momentum. On the same plot, plot also the lines of equation

log(‖ − ‖)𝑥𝑡 𝑥∗ 𝑡

Out[24]: Text(0.5, 1.0, 'Gradient Descent Error as a Function of Steps')

steps = []
logerror = []
x = np.random.normal(size=d)
xmin = np.linalg.inv(H)@A.T@y
for i in range(120):
 x = x - ((1/L)*(H@x - A.T@y))
 steps.append(i)
 logerror.append(np.log(np.linalg.norm(x-xmin)))
plt.figure(figsize=(10,10))
plt.plot(steps,logerror)
plt.xlabel('Steps')
plt.ylabel('Log Error')
plt.title('Gradient Descent Error as a Function of Steps')

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 5/7

𝑦 = log(1 − 𝜇/𝐿) × 𝑡 and 𝑦 = log () × 𝑡.
−𝐿⎯ ⎯⎯√ 𝜇⎯⎯√

+𝐿
⎯ ⎯⎯√ 𝜇⎯⎯√

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 6/7

In [25]:

Out[25]: <matplotlib.legend.Legend at 0x12558e8f860>

steps_log = []
logerror_log = []
x = np.random.normal(size=d)
xmin = np.linalg.inv(H)@A.T@y
xold = x
beta = 4/(((L**0.5)+(u**0.5))**2)
gamma = (((L**0.5)-(u**0.5))/((L**0.5)+(u**0.5)))**2
for i in range(120):
 temp = x - beta*(H@x - A.T@y) + gamma*(x - xold)
 xold=x
 x=temp
 steps_log.append(i)
 logerror_log.append(np.log(np.linalg.norm(x-xmin)))
plt.figure(figsize=(10,10))
plt.plot(steps_log[:50],logerror_log[:50], c='r', label='GD, with Momentum')
plt.plot(steps,logerror, c='k',label='GD')
plt.plot(steps_log, np.log(1-(u/L))*np.array(steps_log),'k--',label='GD Bound')
plt.plot(steps_log[:50], np.log(((L**0.5)-(u**0.5))/((L**0.5)+(u**0.5)))*np.array
 ,'r--',label='GD, with Momentum Bound')
plt.xlabel('Steps')
plt.ylabel('Log Error')
plt.title('Gradient Descent with Momentum Error as a Function of Steps')
plt.legend()

12/12/2020 gradient_descent - Jupyter Notebook

localhost:8888/notebooks/gradient_descent.ipynb 7/7

