
DS-GA 1014 - Homework 2

Eric Niblock

September 4th, 2020

1. Which of the following are linear transformations? Justify.

For this problem, we will need to utilize the definition of linear transformation,

A linear transformation between two vector spaces V and W is a map T : V →W
such that the following hold: (1) T (−→v1 + −→v2) = T (−→v1) + T (−→v2) for any vectors
−→v1,−→v2 ∈ V and (2) T (c−→v ) = cT (−→v ) for any c ∈ IR. [Def. 1]

(a) T : (x, y) ∈ IR2 → (x2 + y2, x− y) ∈ IR2

T is not a linear transformation because it fails conditions in Definition 1. Here,
we show failure of condition (2),

T

(
c

[
x
y

])
=

[
c2(x2 + y2)
c(x− y)

]
6= cT

([
x
y

])
=

[
c(x2 + y2)
c(x− y)

]
(1)

For some c ∈ IR.

(b) T : (x, y) ∈ IR2 → (x + y + 1, x− y) ∈ IR2

T is not a linear transformation because it fails conditions in Definition 1. Here,
we show failure of condition (2),

T

(
c

[
x
y

])
=

[
c(x + y) + 1
c(x− y)

]
6= cT

([
x
y

])
=

[
c(x + y + 1)
c(x− y)

]
(2)

For some c ∈ IR.
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(c) T : A ∈ IRn×m → AT ∈ IRm×n where AT is transpose of A, i.e. the m × n
matrix defined by (AT )j,i = Ai,j for all (i, j) ∈ 1, ...,m× 1, ..., n.

T is a linear transformation because it satisfies both properties. First we show
that it satisfies property (1):

For any two matrices, A,B ∈ IRn×m, given by

A =

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m

 B =

b1,1 · · · b1,m
...

. . .
...

bn,1 · · · bn,m

 (3)

We have that,

(A + B)T =


a1,1 · · · a1,m

...
. . .

...
an,1 · · · an,m

+

b1,1 · · · b1,m
...

. . .
...

bn,1 · · · bn,m




T

=


(a + b)1,1 · · · (a + b)1,m

...
. . .

...
(a + b)n,1 · · · (a + b)n,m




T

=

 (a + b)1,1 · · · (a + b)n,1
...

. . .
...

(a + b)1,m · · · (a + b)n,m


=

a1,1 · · · an,1
...

. . .
...

a1,m · · · an,m

+

 b1,1 · · · bn,1
...

. . .
...

b1,m · · · bn,m


= AT + BT

(4)

This satisfies property (1). Now we show property (2). For any c ∈ IR,

(cA)T =

c

a1,1 · · · a1,m
...

. . .
...

an,1 · · · an,m




T

=

ca1,1 · · · ca1,m
...

. . .
...

can,1 · · · can,m


T

=

 ca1,1 · · · can,1
...

. . .
...

ca1,m · · · can,m

 = c

a1,1 · · · an,1
...

. . .
...

a1,m · · · an,m

 = c(AT )

(5)
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(d) T : A ∈ IRn×n → Tr(A) ∈ IR where Tr(A) is the trace of the matrix A,
defined by,

Tr(A) =

n∑
i=1

Ai,i (6)

T is a linear transformation because it satisfies both properties. First we show
that it satisfies property (1):

For any two matrices, A,B ∈ IRn×n, we have,

Tr(A + B) =

n∑
i=1

(A + B)i,i =

n∑
i=1

Ai,i + Bi,i

=

n∑
i=1

Ai,i +

n∑
i=1

Bi,i = Tr(A) + Tr(B)

(7)

This satisfies property (1). Now we show property (2). For any c ∈ IR,

Tr(cA) =

n∑
i=1

cAi,i = c

n∑
i=1

Ai,i = cTr(A) (8)
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2. Let f : IR2 → IR3 be a linear transformation such that

f(1, 2) = (1, 2, 3) and f(2, 2) = (1, 0, 1)

(a) Compute the matrix (canonically) associated to f .

Since the function f represents a transformation of some vector from IR2 → IR3,

we can model it as a matrix A such that A−→x =
−→
b . So, we have,

a b
c d
e f

[1
2

]
=

1
2
3

 a b
c d
e f

[2
2

]
=

1
0
1

 (9)

Though matrix multiplication we arrive at three different systems of equations,

a + 2b = 1
2a + 2b = 1

c + 2d = 2
2c + 2d = 0

e + 2f = 3
2e + 2f = 1

(10)

So, then we find a = 0, b = 1/2, c = −2, d = 2, e = −2, f = 5/2. So matrix A is
given by,

 0 1/2
−2 2
−2 5/2

 (11)

(b) Compute the set {x ∈ IR2|f(x) = (1, 4, 5)}.

We wish to solve the following,

 0 1/2
−2 2
−2 5/2

−→x =

1
4
5

 (12)

Row reduction yields
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−2 5/2
−2 2
0 1/2

−→x =

5
4
1

 =⇒

−2 5/2
0 1/2
0 1/2

−→x =

5
1
1

 (13)

Since every column has a pivot variable, we know that the dimension of the null
space is zero. Therefore, there is only zero or one solutions. At this point we
multiply, and find the general solution:

−2x1 + 5x2

2
x2

2
x2

2

 =

5
1
1

 =⇒ −→x =

[
0
2

]
(14)

So, the one and only solution is given above. The set of solutions is therefore {−→x }.

(c) Compute the set {x ∈ IR2|f(x) = (2, 4, 5)}

We wish to solve the following,

 0 1/2
−2 2
−2 5/2

−→x =

2
4
5

 (15)

Row reduction yields

−2 5/2
−2 2
0 1/2

−→x =

5
4
2

 =⇒

−2 5/2
0 1/2
0 1/2

−→x =

5
1
2

 (16)

Since every column has a pivot variable, we know that the dimension of the null
space is zero. Therefore, there is only zero or one solutions. At this point we
multiply, and find that no solution exists:

−2x1 + 5x2

2
x2

2
x2

2

 =

5
1
2

 (17)
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This implies that x2 = 4 and x2 = 2, which cannot be the case. Therefore the
set of solutions is {∅}.
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3. Let B ∈ IR4×3 be a matrix with arbitrary entries:

B =


B1,1 B1,2 B1,3

B2,1 B2,2 B2,3

B3,1 B3,2 B3,3

B4,1 B4,2 B4,3

 (18)

Find two matrices A and C such that

ABC =

 B1,2 B1,1 B1,3 B1,2

B2,2 + B3,2 B2,1 + B3,1 B2,3 + B3,3 B2,2 + B3,2

B4,2 B4,1 B4,3 B4,2

 (19)

Holds for any B defined above.

We conjecture that matrices A and C are the ones given below,

A =

1 0 0 0
0 1 1 0
0 0 0 1

 C =

0 1 0 0
1 0 0 1
0 0 1 0

 (20)

We can prove this through matrix multiplication. So,

ABC = A(BC) =

1 0 0 0
0 1 1 0
0 0 0 1



B1,2 B1,1 B1,3 B1,2

B2,2 B2,1 B2,3 B2,2

B3,2 B3,1 B3,3 B3,2

B4,2 B4,1 B4,3 B4,2

 (21)

And finally,

ABC =

 B1,2 B1,1 B1,3 B1,2

B2,2 + B3,2 B2,1 + B3,1 B2,3 + B3,3 B2,2 + B3,2

B4,2 B4,1 B4,3 B4,2

 (22)
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4. (a) Let A be a n ×m matrix. Show that the image Im(A) and the kernel
Ker(A) are subspaces of respectively IRn and IRm.

First, we show that Ker(A) is a subspace of IRm if we are given some n × m
matrix. Observe the following definition,

If A is some n×m matrix, then the null space of A, N (A), is defined by

N (A) = {−→x ∈ IRm |A−→x =
−→
0 } (23)

[Def. 2]

Now, in order to show that N (A) is a subspace of IRm, we must show that (1)
N (A) contains the zero-vector, (2) is closed under vector-addition, and is (3)
closed under scalar multiplication.

We know that
−→
0 ∈ N (A) since

−→
0 ∈ IRm and A

−→
0 =

−→
0 . So condition (1) is

satisfied.

Now, if we take some −→x1 ∈ N (A) and some −→x2 ∈ N (A) then it must follow that
−→x1 +−→x2 ∈ N (A). Since −→x1 ∈ N (A), A−→x1 =

−→
0 , and since −→x2 ∈ N (A), A−→x2 =

−→
0 .

So,

A−→x1 + A−→x2 =
−→
0 +

−→
0 =

−→
0 (24)

A(−→x1 +−→x2) =
−→
0 (25)

Which implies that −→x1 +−→x2 ∈ N (A). This shows condition (2).

Finally, if we take some −→x ∈ N (A), it must follow that c−→x ∈ N (A) for any

c ∈ IR. Since −→x ∈ N (A), A−→x =
−→
0 . So,

cA−→x = c
−→
0 =

−→
0 (26)

A(c−→x ) =
−→
0 (27)

Which implies that c−→x ∈ N (A). This shows condition (3). Therefore, N (A),
synonymous with the Ker(A), is a subspace of IRm since it is mapped out by

the vectors {−→x ∈ IRm |A−→x =
−→
0 } and satisfies the conditions required by the
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definition of a subspace.

Now we show that the Im(A) is a subspace of IRn if we are given some n ×m
matrix. Observe the following definition,

If A is some n×m matrix, then the image of A, Im(A), is defined by

Im(A) = {−→y ∈ IRn | −→x ∈ IRm : A−→x = −→y } (28)

[Def. 3]

Now, in order to show that Im(A) is a subspace of IRn, we must show that (1)
Im(A) contains the zero-vector, (2) is closed under vector-addition, and is (3)
closed under scalar multiplication.

We know that
−→
0 ∈ Im(A) since this implies there is some −→x ∈ IRm such that

A−→x =
−→
0 . This is always true if we take −→x =

−→
0 . So condition (1) is satisfied.

Now, if we take some −→y1 ∈ Im(A) and some −→y2 ∈ Im(A) then it must follow that
−→y1 +−→y2 ∈ Im(A). Since −→y1 ∈ Im(A) and some −→y2 ∈ Im(A), we know that there
exists some −→x1 and −→x2 such that,

A−→x1 = −→y1

A−→x2 = −→y2

(29)

Adding these equations and factoring implies,

A−→x1 + A−→x2 = −→y1 +−→y2

A(−→x1 +−→x2) = −→y1 +−→y2

(30)

This shows that −→y1 + −→y2 ∈ Im(A) since there is some vector, namely −→x1 + −→x2,
which when transformed by the matrix A yields −→y1 +−→y2 ∈ Im(A). So condition
(2) is satisfied.

Finally, we show condition (3). If we take some −→y ∈ Im(A), it must follow that
c−→y ∈ Im(A) for any c ∈ IR. Since −→y ∈ Im(A), we know there exists some −→x
such that A−→x = −→y . So, multiplying by c, we see,
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A−→x = −→y
cA−→x = c−→y

A(c−→x ) = c−→y
(31)

This shows that c−→y ∈ Im(A) since there is some vector, namely c−→x , which when
transformed by the matrix A yields c−→y ∈ Im(A). So condition (3) is satisfied.
Therefore, Im(A) is a subspace of IRn since it is mapped out by the vectors
{−→y ∈ IRn | −→x ∈ IRm : A−→x = −→y } and satisfies the conditions required by the
definition of a subspace.

(b) Let

A =

 1 2 1 2
−1 1 −1 1
0 1 0 2

 (32)

Compute a basis of Ker(A) and show that Im(A) = IR3.

We can find Ker(A) by performing row reduction on A,

A =

 1 2 1 2
−1 1 −1 1
0 1 0 2

 =⇒ A =

1 2 1 2
0 3 0 3
0 1 0 2

 =⇒ A =

1 2 1 2
0 1 0 1
0 0 0 1

 (33)

From the last line of (24) we see that there are exactly three pivot columns and
one free column. Thus, we now expect one vector to form our basis for Ker(A),

and it will result from A−→x =
−→
0 . We now have a system of equations, where we

take the free variable x3 = t. Then,

x1 + 2x2 + x3 + 2x4

x2 + x4

x4

 =

0
0
0

 =⇒


x1

x2

x3

x4

 =


−t
0
t
0

 (34)

Then the solutions to A−→x =
−→
0 are given by,
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−→x =


−t
0
t
0

 (35)

For any t ∈ IR. And a basis for Ker(A) is then given by,

{
−1
0
1
0


}

(36)

Now we know two different properties of the rank, that allow us to show Im(A) =
IR3. Observe the first definition,

If A is some n×m matrix, then

rank(A) + dim(Ker(A)) = m (37)

[Def. 4]

And furthermore, observe this second definition,

If A is some n×m matrix, then

rank(A) = dim(Im(A)) (38)

[Def. 5]

So, with dim(Ker(A)) = 1 and m = 4, then by Definition 4, rank(A) = 3. By
Definition 5, dim(Im(A)) = 3, which implies that Im(A) = IR3.
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