DS-GA 1014 - Homework 3

Eric Niblock

September 21th, 2020

- 1. (2 points). Let $A \in \mathbb{R}^{n \times n}$.
	- (a) Show that if $A = \alpha Id_n$ for some $\alpha \in \mathbb{R}$, then for all $B \in \mathbb{R}^{n \times n}$ we have $AB = BA$.

Given that we have the definition,

If A is some $n \times n$ matrix, then

$$
AId_n = Id_n A = A \tag{1}
$$

[Def. 1]

Then, we can directly show the equality,

$$
AB = BA \tag{2}
$$

$$
(\alpha Id_n)B = B(\alpha Id_n) \tag{3}
$$

$$
\alpha(Id_n B) = \alpha(BId_n) \tag{4}
$$

And by *Definition 1*, we have, $Id_nB = BId_n = B$, so,

$$
\alpha B = \alpha B \tag{5}
$$

Thus we have shown that if if $A = \alpha Id_n$ for some $\alpha \in \mathbb{R}$, then for all $B \in \mathbb{R}^{n \times n}$ we have $AB = BA$.

(b) Conversely, show that if for all $B \in \mathbb{R}^{n \times n}$ we have $AB = BA$, then there exists $\alpha \in \mathbb{R}$ such that $A = \alpha Id_n$.

Given that $AB = BA$, we choose $B \in \mathbb{R}^{n \times n}$ such that $B = e_i e_j^T$. This makes B a matrix such that if B is formed of elements $b_{i,j}$ then B is 1 in the (i, j) element, and 0 everywhere else. Furthermore, we use the notation that A_i is the *i*-th column of the matrix A, and $A^{(j)}$ is the j-th row of matrix A. Then, we have,

$$
AB = A(e_i e_j^T) = A_i e_j^T \tag{6}
$$

$$
BA = (e_i e_j^T)A = e_i A^{(j)} \tag{7}
$$

$$
A_i e_j^T = e_i A^{(j)} \tag{8}
$$

The left side of this equation is a matrix with the i -th column of the matrix A , in its j-th column. The right side of the equation is a matrix, of the same size, with the j-th row of A in its i-th row. Comparing these two matrices, which must be equal, implies that all $a_{i,j} = 0$ unless $i = j$. Therefore, it is evident that only the diagonal of A are nonzero. Even more so, the elements of the diagonals are equal,

$$
a_{i,i} = (AB)_{i,j} = (BA)_{i,j} = a_{j,j}
$$
\n⁽⁹⁾

Since the diagonal of A is completely populated, and all entries are equal, we have that,

$$
A = \alpha I d_n \tag{10}
$$

2. (3 points). Let $M \in \mathbb{R}^{n \times m}$ and $r = rank(M)$. Show that there exists $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times m}$ such that $M = AB$.

Given some matrix $M \in \mathbb{R}^{n \times m}$ such that $r = rank(M)$, a rank of r implies the columns of M, denoted as $\overrightarrow{m_1},...,\overrightarrow{m_m}$ are in the span of some r vectors in \mathbb{R}^n . In
other words, $\overrightarrow{m_1},...,\overrightarrow{m_m} \in Span(\overrightarrow{v_1},...,\overrightarrow{v_r})$ for some $\overrightarrow{v_1},...,\overrightarrow{v_r} \in \mathbb{R}^n$. We then set
the columns of A to be $A \in \mathbb{R}^{n \times r}$. So far, we have

$$
\left[\overrightarrow{\mathbf{m}_{1}}\right]\dots\left|\overrightarrow{\mathbf{m}_{m}}\right] = \left[\overrightarrow{\mathbf{v}_{1}}\right]\dots\left|\overrightarrow{\mathbf{v}_{r}}\right]\left[\overrightarrow{\mathbf{b}_{1}}\right]\dots\left|\overrightarrow{\mathbf{b}_{m}}\right]
$$
(11)

Where we have set $b_1, ..., b_m$ to be the columns of B such that $b_1, ..., b_m \in \mathbb{R}^r$. We hope to show,

$$
M = AB \tag{12}
$$

As given in (11) as well. We know that for any $i \in \{1, ..., m\}$, we have,

$$
\left[\overrightarrow{\mathbf{m}_{i}}\right] = \left[\overrightarrow{\mathbf{v}_{1}}\right]\dots\left|\overrightarrow{\mathbf{v}_{r}}\right]\left[\overrightarrow{\mathbf{b}_{i}}\right] = b_{i_{1}}\left[\overrightarrow{\mathbf{v}_{1}}\right] + \dots + b_{i_{r}}\left[\overrightarrow{\mathbf{v}_{r}}\right]
$$
(13)

Where b_{i_j} is the j-th component of vector $\overrightarrow{b_i}$. Since, for any $\overrightarrow{m_i}$, $\overrightarrow{m_i} \in Span(\overrightarrow{v_1}, ..., \overrightarrow{v_r})$, where v_{i_j} is energy on component of vector \mathbf{z}_i , since, for any \mathbf{z}_{i_j} , \mathbf{z}_{i_j} , \mathbf{z}_{i_j} and \mathbf{z}_{i_j} we do this by selecting the values of b_{i_j} . Since this can be done for all $i \in \{1, ..., m\}$, we have that there exists $A \in \mathbb{R}^{n \times r}$ and $B \in \mathbb{R}^{r \times m}$ such that $M = AB$ if $r = rank(M)$.

3. (3 points). Let $A \in \mathbb{R}^{n \times m}$.

(a) Let $M \in \mathbb{R}^{m \times m}$ be an invertible matrix. Show that

$$
rank(AM) = rank(A) \tag{14}
$$

Since we have the following proposition,

Let
$$
A \in \mathbb{R}^{n \times m}
$$
 and $B \in \mathbb{R}^{m \times k}$, then rank $(AB) \leq rank(A)$. [Prop. 1]

Therefore, we know that,

$$
rank(AM) \le rank(A) \tag{15}
$$

But since M is invertible, we also have that,

$$
rank((AM)M^{-1}) \le rank(AM)
$$
\n(16)

By Proposition 1. But,

$$
rank((AM)M^{-1}) = rank(AId) = rank(A)
$$
\n(17)

Putting this all together yields the expression,

$$
rank(A) = rank((AM)M^{-1}) \le rank(AM) \le rank(A)
$$
\n(18)

This forces the equality of the expression we set out to prove. Since M is an invertible matrix, we have,

$$
rank(AM) = rank(A)
$$
\n(19)

(b) Let $M \in \mathbb{R}^{n \times n}$ be an invertible matrix. Show that

$$
rank(MA) = rank(A)
$$
\n(20)

In order to show the above equality, we first set out to prove that $Ker(MA) =$ $Ker(A)$. In order to show this, we first show that $Ker(A) \subset Ker(MA)$.

Observing the definition of the null space of A, or $Ker(A)$, we have,

If A is some $n \times m$ matrix, then the null space of A, $\mathcal{N}(A)$, is defined by

$$
\mathcal{N}(A) = \{ \overrightarrow{\mathbf{x}} \in \mathbb{R}^{\mathbf{m}} \, | \, A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}} \} \tag{21}
$$

 $[Def. 2]$

So, for any $\overrightarrow{x} \in Ker(A)$, it follows that,

$$
A\overrightarrow{\mathbf{x}} = \overrightarrow{\mathbf{0}}
$$

$$
MA\overrightarrow{\mathbf{x}} = M\overrightarrow{\mathbf{0}} = \overrightarrow{\mathbf{0}}
$$
 (22)

So, therefore, $\vec{x} \in Ker(MA)$. This suffices to show that $Ker(A) \subset Ker(MA)$. Now we show that $Ker(MA) \subset Ker(A)$.

Proof by contradiction. Suppose that M is an invertible, singular matrix and $Ker(MA) \not\subset Ker(A)$. Then this implies that there exists some vector $\vec{\mathbf{x}}$ such that $M\overrightarrow{x} = \overrightarrow{0}$ but $A\overrightarrow{x} \neq \overrightarrow{0}$. Call $\overrightarrow{y} = A\overrightarrow{x}$. Then this implies that $M(\vec{y}) = \vec{0}$ with $\vec{y} \neq \vec{0}$. From the following theorem,

If
$$
M \in \mathbb{R}^{n \times n}
$$
 is an invertible matrix, then $Ker(M) = \overrightarrow{0}$. [Thm. 1]

We know that it cannot be the case that $M(\vec{y}) = \vec{0}$ with $\vec{y} \neq \vec{0}$, since $Ker(M)$ contains only the zero vector. So we have show by contradiction that $Ker(MA) \subset Ker(A).$

Since we have show that $Ker(A) \subset Ker(MA)$ and $Ker(MA) \subset Ker(A)$, it follows that $Ker(MA) = Ker(A)$. Now, we also have that,

If A is some $n \times m$ matrix, then

$$
rank(A) + dim(Ker(A)) = m \tag{23}
$$

 $[\emph{Thm. 2}]$

So it follows that,

$$
rank(A) + dim(Ker(A)) = m \tag{24}
$$

$$
rank(MA) + dim(Ker(MA)) = m \tag{25}
$$

And again, since $\operatorname{Ker}(MA) = \operatorname{Ker}(A),$ we have proven that,

$$
rank(MA) = rank(A) \tag{26}
$$

4. (2 points). The trace $Tr(M)$ of a $k \times k$ matrix M is defined as the sum of its diagonal coefficients, i.e.

$$
Tr(M) = \sum_{i=1}^{k} M_{i,i}
$$
 (27)

(a) Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$. Show that $Tr(AB) = Tr(BA)$.

If we have two matrices, $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, the shape of AB is $n \times n$ and the shape of BA is $m \times m$, then we have,

$$
(AB)_{i,i} = \sum_{k=1}^{m} a_{i,k} b_{k,i}
$$
 (28)

$$
(BA)_{k,k} = \sum_{i=1}^{n} b_{k,i} a_{i,k}
$$
 (29)

So then it follows that,

$$
Tr(AB) = \sum_{i=1}^{n} (AB)_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{m} a_{i,k} b_{k,i}
$$

=
$$
\sum_{k=1}^{m} \sum_{i=1}^{n} b_{k,i} a_{i,k} = \sum_{k=1}^{m} (BA)_{k,k}
$$

=
$$
Tr(BA)
$$
 (30)

(b) For $A, B, C \in \mathbb{R}^{n \times n}$, do we have $Tr(ABC) = Tr(CAB) = Tr(ACB)$?

It is false that $Tr(ABC) = Tr(CAB) = Tr(ACB)$. Observe the following example for $A, B, C \in \mathbb{R}^{3 \times 3}$, where the trace is calculated in Python,

```
import numpy as np<br>
A = np.array([[1,2,1],[4,2,5],[2,5,6]])<br>
B = np.array([[1,0,1],[4,-2,5],[2,5,-1]])<br>
C = np.array([[1,1,1],[2,2,3],[-2,5,4]])
   def tdot(a,b,c):<br>t = np.dot(b,c)<br>f = np.dot(a,t)
   \begin{array}{l} \mathsf{return}(\mathsf{f}) \\ \mathsf{print}(\mathsf{Tr}(\mathsf{ABC})\colon \mathsf{'} + \mathsf{str}(\mathsf{np}.\mathsf{trace}(\mathsf{tdot}(\mathsf{A},\mathsf{B},\mathsf{C})))) \\ \mathsf{print}(\mathsf{Tr}(\mathsf{CAB})\colon \mathsf{'} + \mathsf{str}(\mathsf{np}.\mathsf{trace}(\mathsf{tdot}(\mathsf{C},\mathsf{A},\mathsf{B})))) \\ \mathsf{print}(\mathsf{Tr}(\mathsf{ACB})\colon \mathsf{'} + \mathsf{str}(\mathsf{np}.\mathsf{trace}(\mathsf{tdot}(\mathsf{A
```
Tr(ABC): 280
Tr(CAB): 280 $Tr(ACB)$: 318

> In this example, it is evident that $Tr(ABC) = Tr(CAB) = Tr(ACB)$ does not hold since $280 = 280 \neq 318$.