
DS-GA 1014 - Homework 4

Eric Niblock

September 26th, 2020

1. (2 points). Let || · || be the usual Euclidean norm on IRn. For −→x ∈ IRn

compute (and justify your result):

max
{−→v T−→x | −→v ∈ IRn, ||−→v || = 1

}
(1)

First, we employ the following theorem given below,

The Cauchy–Schwarz inequality states that for all vectors −→u and −→v of an inner
product space it is true that

〈−→u ,−→v 〉 ≤ ||−→u || ||−→v || (2)

Moreover, there is equality if and only if −→u and −→v are linearly dependent. [Thm. 1]

Given that −→v T−→x = 〈−→v ,−→x 〉, then we have that,

〈−→v ,−→x 〉 ≤ ||−→v || ||−→x || = ||−→x || (3)

Since we have that ||−→v || = 1. So, the set of all max values is such that,

〈−→v ,−→x 〉 = −→v T−→x = ||−→x || (4)

1

Furthermore, by Theorem 1, we know that strict equality comes about only when
−→v = λ−→x , so,

−→v T−→x = λ−→x T−→x = λ||−→x ||2 = ||−→x || (5)

λ =
1

||−→x ||
(6)

So the max values that are generated are ||−→x ||, and they occur for any −→x ∈ IRn when
we take −→v to be,

−→v =
−→x
||−→x ||

(7)

2

2. (1 points). Show that for all x ∈ IRn,

1√
n
||−→x ||1 ≤ ||−→x ||2 ≤ ||−→x ||1 (8)

First we show that ||−→x ||2 ≤ ||−→x ||1. We know that,

||−→x ||22 =

n∑
i=1

x2i ≤

 n∑
i=1

x2i + 2

n∑
i6=j

xixj

 = ||−→x ||21 (9)

||−→x ||22 ≤ ||
−→x ||21 =⇒ ||−→x ||2 ≤ ||−→x ||1 (10)

Since every term above is guaranteed to be positive. So we have shown the latter half
of the inequality, ||−→x ||2 ≤ ||−→x ||1. Now, we know that,

1√
n
||−→x ||1 ≤ ||−→x ||2 ⇐⇒ ||−→x ||1 ≤

√
n||−→x ||2 (11)

We have that the following holds true,

||−→x ||1 =

n∑
i=1

|xi| =
n∑

i=1

|xi| · 1 (12)

At this point, we define the vector −→x such that −→x = (x1, ..., xn) and −→y such that
−→y = (1, ..., 1) for length n. Then by Theorem 1,

n∑
i=1

|xi| ≤

√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

1 =
√
n||−→x ||2 (13)

And finally, we produce the desired result,

3

||−→x ||1 ≤
√
n||−→x ||2 =⇒ 1√

n
||−→x ||1 ≤ ||−→x ||2 (14)

So, therefore we have shown that,

1√
n
||−→x ||1 ≤ ||−→x ||2 ≤ ||−→x ||1 (15)

4

3. (3 points). Let S be a subspace of IRn. We define the orthogonal comple-
ment of S by

S⊥ =
{−→x ∈ IRn | −→x⊥S

}
=
{−→x ∈ IRn | ∀−→y ∈ S, 〈−→x ,−→y 〉 = 0

}
(16)

(a) Show that S⊥ is a subspace of IRn.

In order to show that S⊥ is a subspace, we must show that S⊥ (1) contains the
zero vector, (2) is closed under vector-addition, and (3) is closed under scalar
multiplication.

We know that
−→
0 ∈ S⊥, since for all −→y ∈ S, we have 〈−→0 ,−→y 〉 = 0. So, condition

(1) is satisfied.

If we have two vectors such that −→u ,−→v ∈ S⊥, then we must show that −→u +−→v ∈
S⊥. Since −→u ,−→v ∈ S⊥, we know that 〈−→u ,−→y 〉 = 0 and that 〈−→v ,−→y 〉 = 0, for all
−→y ∈ S. If we are to have −→u +−→v ∈ S⊥ then we must show 〈−→u +−→v ,−→y 〉 = 0, for
all −→y ∈ S. But, by the properties of the inner product, we know that,

〈−→u +−→v ,−→y 〉 = 〈−→u ,−→y 〉+ 〈−→v ,−→y 〉 = 0 + 0 = 0 (17)

So −→u +−→v ∈ S⊥. This satisfies condition (2).

If we have a vector, −→u ∈ S⊥, then we must show that c−→u ∈ S⊥ for any c ∈ IR.
Since −→u ∈ S⊥, we know that 〈−→u ,−→y 〉 = 0 for all −→y ∈ S. We must show that
〈c−→u ,−→y 〉 = 0 for any c ∈ IR, and for all −→y ∈ S. But, by the properties of the
inner product, we have that,

〈c−→u ,−→y 〉 = c〈−→u ,−→y 〉 = c(0) = 0 (18)

This shows that c−→u ∈ S⊥ for any c ∈ IR. Therefore condition (3) is satisfied.

Having satisfied all of the conditions for a subspace, we note that S⊥ is a subspace.

(b) Show that dim(S⊥) = n− dim(S). Hint: use the rank-nullity theorem.

5

Take the family of vectors (−→v1, ...,
−→vm) to be a set of basis vectors for the subspace

S, with all −→vi ∈ IRn. Furthermore, take the family of vectors (−−−→vm+1, ...,
−→vk) to be

a set of basis vectors for the subspace S⊥, with all −→vi ∈ IRn. If this is the case,
then we have that dim(S) = m and dim(S⊥) = k −m. So if we hope to show
dim(S⊥) = n− dim(S), then we must show k−m = n−m =⇒ k = n. We now
attempt to show that k = n.

First, we know that the family of vectors (−→v1, ...,
−→vm,
−−−→vm+1, ...,

−→vk) is linearly in-
dependent, since for any basis vector −→vi ∈ S⊥ we have that −→vi⊥S, and therefore
−→vi⊥−→y for any vector −→y ∈ S (furthermore, −→vi must be independent of all other
basis vectors within S⊥, by the definition of a basis). Since the family of vectors
is linearly independent, this implies that k ≤ n, since a vector space V = IRn can
contain at most n linearly independent vectors.

Suppose that k < n. Then, if we form a matrix A, with its rows being formed of−→
vT
1 , ...,

−→
vT
k , the shape of A would be k × n. Since n > k, the matrix is wide and

has less than n pivots. This implies that the kernel of A contains at least one
nonzero vector, call it −→z . Then,

A−→z =

−→
vT
1
...
−→
vT
k

−→z =

〈
−→v1,
−→z 〉

...
〈−→vk,
−→z 〉

 =
−→
0 (19)

Since 〈−→v1,
−→z 〉 = ... = 〈−→vk,

−→z 〉 = 0, we deduce that −→z ∈ S and −→z ∈ S⊥. However,

then 〈−→z ,−→z 〉 = 0, implying that −→z =
−→
0 , which is a contradiction. Therefore,

k = n. Since k = n we have shown that dim(S⊥) = n− dim(S).

(c) Let v = (1, 1, 1) ∈ IR3 and define

H =
{−→x ∈ IR3 | −→x⊥−→v

}
= Span(v)⊥ (20)

Find an orthonormal basis of H and an orthonormal basis of H⊥.

We might instead rephrase the definition of H such that

H =
{−→x ∈ IR3 | −→v T−→x = 0

}
(21)

6

Thus the problem becomes finding the null space of −→v T . Considering this vector
as a matrix, it has already been row reduced, and we are left with,

x1 + x2 + x3 = 0 (22)

With x2 and x3 being free-variables. Thus, we suggest the basis,

{ 2
−1
−1

 ,
 0

1
−1

} (23)

Note that the vectors within the basis are both orthogonal with −→v as well as
with each other. Now, all we need to do is normalize them by dividing by their
length. Thus, an orthonormal basis for H is given by,

{
1√
6

 2
−1
−1

 , 1√
2

 0
1
−1

} (24)

(d) Write the matrix of PH , the orthogonal projection on H.

The matrix PH is given by PH = AAT where A has columns that represent the
orthonormal basis vectors of H. So,

PH = AAT =

 2/
√
6 0

−1/
√
6 1/

√
2

−1/
√
6 −1/

√
2

[2/√6 −1/
√
6 −1/

√
6

0 1/
√
2 −1/

√
2

]
(25)

PH =

 2/3 −1/3 −1/3
−1/3 2/3 −1/3
−1/3 −1/3 2/3

 (26)

7

4. (4 points). In this problem, we will see how to compress (using a method
similar to the one used in the jpeg standard) and denoise images, by using
a particular orthonormal basis called a “wavelet basis”.

Please observe the attached PDF containing the Python file used for this problem.

8

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 1/13

In [44]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plot
plot.gray()

In [45]: # Two auxiliary functions that we will use. You do not need to read them (but
make sure to run this cell!)

Function that construct a matrix whose columns are the vectors of the Haar w
avelet basis in dimension n=2**d
def haar(d):
 n = 2**d
 m = np.zeros((n,n))
 l = 1
 for i in range(d):
 k = int(n / (2*l))
 for j in range(k):
 m[2*j*l : 2*j*l + l, j+n-2*k] = 1 / np.sqrt(2*l)
 m[2*j*l+l : 2*(j+1)*l, j+n-2*k,] = -1 / np.sqrt(2*l)
 l = 2*l
 m[:,-1] = 1 / np.sqrt(n)
 return m

def plot_vector(v):
 plot.plot(v,linestyle='', marker='o',color='black')

1. Haar Wavelets

1.1. The canonical basis
The vectors of the canonical basis are the columns of the identity matrix in dimension . We plot their
coordinates below for .

n

n = 8

<Figure size 432x288 with 0 Axes>

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 2/13

In [46]: identity = np.identity(8)
print(identity)

plot.figure(figsize=(20,7))
for i in range(8):
 plot.subplot(2,4,i+1)
 plot.title(f"{i+1}th vector of the canonical basis")
 plot_vector(identity[:,i])

print('\n Nothing new so far...')

1.2. Haar wavelet basis
Haar wavelets basis is another basis of when is a power of 2, that is for some . The function
haar(k) outputs a square matrix of dimension whose columns are the vectors of the Haar wavelet

basis.

R
n

n n = 2
k

k

n = 2
k

[[1. 0. 0. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 0.]
 [0. 0. 1. 0. 0. 0. 0. 0.]
 [0. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 0. 0.]
 [0. 0. 0. 0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 0. 0. 0. 1.]]

 Nothing new so far...

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 3/13

In [47]: # Matrix of Haar wavelets in dimension n = 2**3 = 8
H8 = haar(3)
print(np.round(H8,3))

plot.figure(figsize=(20,7))

for i in range(8):
 plot.subplot(2,4,i+1)
 plot.title(f"{i+1}th wavelet of the Haar basis")
 plot_vector(H8[:,i])

(a) Check numerically (in one line of code) that the columns of H8 are an orthonormal basis of (ie verify that
the Haar wavelet basis is an orthonormal basis).

R
8

In [48]: print(np.round(np.dot(H8, H8.T),10))

The vectors of the Haar wavelet basis are called wavelets.

Given a vector , the coordinates of in the wavelet Haar basis are called the wavelet coefficients of .x ∈ R
n

x x

[[0.707 0. 0. 0. 0.5 0. 0.354 0.354]
 [-0.707 0. 0. 0. 0.5 0. 0.354 0.354]
 [0. 0.707 0. 0. -0.5 0. 0.354 0.354]
 [0. -0.707 0. 0. -0.5 0. 0.354 0.354]
 [0. 0. 0.707 0. 0. 0.5 -0.354 0.354]
 [0. 0. -0.707 0. 0. 0.5 -0.354 0.354]
 [0. 0. 0. 0.707 0. -0.5 -0.354 0.354]
 [0. 0. 0. -0.707 0. -0.5 -0.354 0.354]]

[[1. 0. -0. -0. 0. 0. 0. 0.]
 [0. 1. -0. -0. 0. 0. 0. 0.]
 [-0. -0. 1. 0. 0. 0. 0. 0.]
 [-0. -0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 1. 0. -0. -0.]
 [0. 0. 0. 0. 0. 1. -0. -0.]
 [0. 0. 0. 0. -0. -0. 1. 0.]
 [0. 0. 0. 0. -0. -0. 0. 1.]]

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 4/13

In [49]: # Let consider the following vector x
x = np.sin(np.linspace(0,np.pi,8))
plot.title('Coordinates of x in the canonical basis')
plot_vector(x)

(b) Compute the vector of wavelet coefficients of . (1 line of code!)

How can we obtain back from ? (1 line of code!).

v ∈ R
8

x

x v

In [50]: v = np.dot(H8.T, x)
print('v: ', v)

same_x = np.dot(H8, v)
print('x: ', same_x)

2. Image compression
In this section, we will use Haar wavelets to compress images

In [51]: # Reading the image file
img_RGB = plot.imread('sleeping.jpg')
h,w,d = img_RGB.shape
print(f'Height: {h}, Width: {w}, Number of channels: {d} (Red, Green, Blue)')

The 'image tensor' img_RGB contains 3 matrices: img_RGB[:,:,0] , img_RGB[:,:,1] and
img_RGB[:,:,2] , giving for each pixel the amount of red, green and blue.

v: [-3.06802134e-01 -1.36539795e-01 1.36539795e-01 3.06802134e-01
 -6.61437828e-01 6.61437828e-01 -6.99260413e-17 1.54901862e+00]
x: [0.00000000e+00 4.33883739e-01 7.81831482e-01 9.74927912e-01
 9.74927912e-01 7.81831482e-01 4.33883739e-01 1.66533454e-16]

Height: 2934, Width: 4500, Number of channels: 3 (Red, Green, Blue)

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 5/13

In [52]: plot.figure(figsize=(30,20))
colors = ['red','green','blue']
for i in range(3):
 plot.subplot(2, 2, i+1)
 plot.title(colors[i])
 plot.imshow(img_RGB[:,:,i])

plot.subplot(2,2,4)
plot.title('red, green, blue combined')
plot.imshow(img_RGB)
plot.show()

Our goal is to compress and denoise such RGB images. For simplicity, we will do it for only one of the three
colors:

In [53]: image = img_RGB[:,:,1] # Consider the green component only

It will be much more convenient to use images whose dimensions are powers of 2. Hence we crop the original
image:

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 6/13

In [54]: def power2crop(img):
 height, width= img.shape
 height2, width2 = 2**int(np.log2(height)), 2**int(np.log2(width))
 padh, padv= int((height-height2)/2), int((width-width2)/2)
 return img[padh:padh+height2, padv:padv+width2]

image = power2crop(image)
print(f'The image is now {image.shape[0]} x {image.shape[1]}')

plot image
plot.figure(figsize=(20,10))
plot.title('The image that we will use')
plot.imshow(image)
plot.show()

Image compression
We will use the Haar wavelet basis to compress our image. We will see each column of pixels as a vector in

, and compute their coordinates in the Haar wavelet basis of .R
2048

R
2048

The image is now 2048 x 4096

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 7/13

In [55]: H = haar(11) # matrix of the Haar basis of dimension 2**11 = 2048
x = image[:,0]

Plot the entries of x, the first column of our image
plot.plot(x,color='black')
plot.xlabel('index of the coefficients of x')
plot.ylabel('value of the coefficients of x')
plot.show()

(c) Compute the vector v of the coordinates of x in the Haar basis, and plot its entries.

Explain intuitively why there are only few coefficients of significant magnitude.

In [56]: v = np.dot(H.T, x)
plot.plot(v,color='black')
plot.xlabel('index of the coefficients of v')
plot.ylabel('value of the coefficients of v')
plot.show()

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 8/13

(d) Compute the 2048 x 4096 matrix wavelet_coeffs whose columns are the wavelet coefficients of the
columns of image .

In [57]: wavelet_coeffs = np.dot(H.T, image)
wavelet_coeffs.shape

Since a large fraction of the wavelet coefficients seems to be negligible, we see that the vector v can be well
approximated by a linear combination of a small number of wavelets.

Hence, we can 'compress' the image by only storing a few wavelet coefficients of largest magnitude.

Let say that we want to reduce the size by : Store only the top largest (in absolute value) coefficients of
`wavelet_coeffs.

97% 3%

(e) Compute a matrix thres_coeffs who is the matrix wavelet_coeffs where about smallest entries
have been put to 0.

97%

In [58]: vals = wavelet_coeffs.flatten()
print(max(vals))
print(min(vals))
thresh = np.percentile(np.absolute(vals), 97)
print(thresh)
thres_coeffs = wavelet_coeffs
thres_coeffs[(-1*thresh < thres_coeffs) & (thres_coeffs < thresh)] = 0

(f) Compute and plot the compressed_image corresponding to thres_coeffs .

Out[57]: (2048, 4096)

4976.993176468426
-1308.625
41.01219330881975

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 9/13

In [59]: compressed_image = np.dot(H, thres_coeffs)

plot.figure(figsize=(20,10))
plot.title('Compressed Image')
plot.imshow(compressed_image)
plot.show()

3. Image denoising
From now on, we will work with the compressed_image computed in the previous section, for which
about of wavelet coefficients are 0. (We make this choice only in order to make the analysis easier).

We suppose that our compressed_image has been corrupted by some Gaussian noise of variance :

97%

σ

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 10/13

In [60]: sigma=5
Z=np.random.normal(size=compressed_image.shape) # matrix filled with independe
nt standard Gaussian random variables

noisy_image = compressed_image + sigma * Z

plot.figure(figsize=(20,10))
plot.imshow(noisy_image)
plot.title('Noisy image')
plot.show()

Theoretical analysis
We would like to denoise the noisy_image . Again, we will denoise each column separately.

Let be a column of the compressed_image and the corresponding column of noisy_image . Then we
have

where the are iid .

x y

= + σyj xj zj

zj N (0, 1)

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 11/13

Without knowledge of the structure of , one can not really improve on the stupid estimator that
achieve and error

where is the height of the image. We see here that the error grows linearly in , which is an issue,
when is very large.

However, we know from the previous section that is 'sparse in the wavelet basis', ie a large fraction of the
wavelet coefficients of are 0. Only wavelet coefficients of are non-zero (here, we have).

Using this information we will construct in the following an estimator for which

In many situation, , hence this denoising procedure leads to a huge improvement.

x = yx̂stupid

∥x − = ∥σz ≃ N,x̂stupid∥2 ∥2 σ2

N = 2048 N

N

x

x s x s ≃ 0.03 × N

x̂

∥x − ≤ 8 s log(N),x̂∥2 σ2

s << N

The key is again to study the problem in the Haar wavelet basis. Let and be the coefficients of respectively
 and in the Haar wavelet basis. Optional: Justify that

where the are iid .

v w

x y

= + σwj vj ϵj

ϵj N (0, 1)

Probability theory tells us that for large ,

hence we will assume in the sequel that for all . It has been proposed to estimate from
by "soft-thresholding" the coefficient of : $$ \hat{v}_j =

\eta\Big(w_j, \sigma \sqrt{2 \log N}\Big)

$$ (we basically set the coefficients smaller than $\sigma \sqrt{2 \log N}$ to zero, but in order to avoid creating
discontinuities, we also shrink the larger coefficients).

N

max ≃ ,ϵi 2 log(N)
− −−−−−−

√
| | ≤ϵi 2 log(N)

− −−−−−−√ i v w

v

⎧

⎩
⎨
⎪

⎪

0

− σwj 2 log N
− −−−−−√

+ σwj 2 log N
− −−−−−√

if | | ≤ σwj 2 log N
− −−−−−√

if ≥ σwj 2 log N
− −−−−−√

if ≤ −σwj 2 log N
− −−−−−√

(g) Give an intuitive motivation for the procedure above.

---------ANSWER----------

This method is reasonable, because if , then we know that was already not very
significant, since could be at most . Then, since is relatively small and insignificant, we set it
equal to zero as we would have done anyways, because it is surely not within the top 3% of data values. The
other aspects of are simply to avoid large discontinuities, and push maximal values closer together.

---------ANSWER----------

| | ≤ σwj 2 log N
− −−−−−√ vj

vj σ 2 log N
− −−−−−√ vj

v̂j

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 12/13

(h) Justify that

and deduce and estimator such that
∥v − ≤ 8 s log(N),v̂∥2 σ2

x̂

∥x − ≤ 8 s log(N).x̂∥2 σ2

---------ANSWER----------

We wish to find the maximum error that could exist, given by

So we start by considering . The maximum possible error associated with occurs when

Meaning that,

Then we know that if soft-thresholding yields

We get,

Furthermore, for , we know that at most only of values could satisfy this aspect of soft-
thresholding, since the others are too small and will be set to zero. So, in this case we would have,

Since . So, in general then,

Furthermore, we know that the transition between and is governed by the matrix associated by the Haar
basis. But applying an orthogonal matrix to some vector does not change that vector's magnitude. Therefore, this
inequality will also hold as follows,

---------ANSWER----------

||v − |v̂ |2

vj || − |vj v̂j |2

= + σ = + σwj vj ϵj vj 2 log(N)
− −−−−−−

√

= − σvj wj 2 log(N)
− −−−−−−

√

= + σv̂j wj 2 log N
− −−−−−√

− = −2σvj v̂j 2 log N
− −−−−−√

|| − | = 8 log Nvj v̂j |2
σ2

||v − |v̂ |2 0.03N

||v − | = 8 s log Nv̂ |2
σ2

s = 0.03N

||v − | ≤ 8 s log Nv̂ |2
σ2

x v

||x − | ≤ 8 s log Nx̂ |2
σ2

Application
(i) Apply the method studied above to denoise the noisy_image . You have to compute and plot a matrix
denoised_image .

We give below the soft-thresholding function :η

In [61]: def soft_thresholding(data,value):
 return data/np.abs(data) * np.maximum(np.abs(data) - value, 0)

10/2/2020 wavelets

localhost:8888/nbconvert/html/wavelets.ipynb?download=false 13/13

In [62]: data = np.dot(H.T,noisy_image)
corrected = soft_thresholding(data,(5*np.log(2048))**0.5)
denoised_image = np.dot(H,corrected)

We check below that the denoised_image is closer from compressed_image than noisy_image :

In [63]: def square_error(img1,img2):
 h,w = img1.shape
 return np.sum(np.square(img1-img2)) /(h*w)

error_naive = square_error(noisy_image, compressed_image)
error_denoised = square_error(denoised_image, compressed_image)

print(f'Error of the naive estimator: {error_naive} (this should be close to s
igma**2)')
print(f'Error of the denoised image: {error_denoised}')

Concluding remarks
You should observe that the error achieved by the denoised_image is about the half of the one of the naive
estimator.

This is very nice. In practice, one can do much better:

There exists better thresholds than , that leads to a smaller error.
In practice, we do not perform the wavelet decomposition over the columns (of size 2048) but over the all
image using '2D' wavelets. Instead of having we have now , hence the
improvement from to is much bigger.
Using 2D-wavelets would also remove many of the 'horizontal edges' that we see on the compressed and
denoised images.
Here, we used for simplicity the Haar wavelets, but there exists other wavelets that are better for image
compression/denoising. By 'better', we mean 'sparser images wavelet coefficients': the sparser is, the
smaller is in the bound .
Ultimately, it is possible to 'learn' a good basis in which images are sparse, see for instance this tutorial
(http://lear.inrialpes.fr/people/mairal/tutorial_cvpr2010/).

σ 2 log(N)
− −−−−−−√

N = 2048 N = 2048 × 4096
Nσ

2 8 s log(N)σ
2

v

s ≤ 8 s log(N)σ
2

Error of the naive estimator: 24.990565186143836 (this should be close to sig
ma**2)
Error of the denoised image: 4.023196197108329

