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1. (2 points). Let S be a subspace of IRn and let PS be the matrix of the
orthogonal projection onto S. Let M = Idn − 2PS.

(a) Show that the matrix M is orthogonal.

First, we have the following proposition,

Let A ∈ IRn×n. Then if A is an orthogonal matrix, this is equivalent to saying
AAT = Idn = ATA [Prop. 1].

So to show that matrix M is orthogonal, all we must show is that MMT = Idn.
This follows readily,

MMT = (Idn − 2PS)(Idn − 2PS)T = (Idn − 2PS)(IdTn − 2PTS ) (1)

Now, we must employ two properties. The first is that, for any projection matrix
P , we have that P = PT (and it goes without saying that Idn = IdTn ). Secondly,
we have that for any projection matrix P = P 2 (and it goes without saying that
Idn = Id2n). Then, it follows from the end of (1) that,

MMT = (Idn − 2PS)(IdTn − 2PTS ) = (Idn − 2PS)(Idn − 2PS)

= Id2n − 2IdnPS − 2PSIdn + 4P 2
S

= Idn − 4PS + 4PS

= Idn

(2)

This suffices to show that M is an orthogonal matrix by Proposition 1, since
MMT = Idn.
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(b) Show that if λ ∈ IR is an eigenvalue of M , then λ = 1 or λ = −1.

We know that M is an orthogonal matrix, and hence preserves the length of any
vector is acts upon, since,

||M−→v ||2 = 〈M−→v ,M−→v 〉 = −→v TMTM−→v = −→v T−→v = 〈−→v ,−→v 〉 = ||−→v ||2 (3)

Now, if we take −→v ∈ IRn to be some eigenvector of A, we also have,

M−→v = λ−→v (4)

〈M−→v ,M−→v 〉 = 〈λ−→v , λ−→v 〉 = λ2〈−→v ,−→v 〉 = λ2||−→v ||2 (5)

This implies that,

||−→v ||2 = λ2||−→v ||2 (6)

λ = ±1 (7)
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2. (2 points). Let −→v ∈ IRn be a non-zero vector. What are the eigenvalues of
the n× n matrix

M = −→v−→v T

and their multiplicities? (In the expression −→v−→v T we see −→v as a matrix
with 1 column and n rows).

We can write the matrix M with columns that are combinations of the rows of −→v as
follows,

M = −→v−→v T =

vT1 −→v ... vTn
−→v

 (8)

So it is evident that the columns of M are linearly dependent, since each is just a

constant multiple of −→v . Since −→v 6= −→0 , we have that rank(M) = 1.

Now, we can very easily find one eigenvalue since,

M−→v = λ−→v (9)

(−→v−→v T )−→v = λ−→v (10)

−→v (−→v T−→v ) = λ−→v (11)

So, it follows that the eigenvalue associated with the eigenvector −→v is given by,

λ = −→v T−→v (12)

Now, an eigenvalue of 0 implies that,

M−→u = 0 · −→u =
−→
0 (13)

Which implies that any vector −→u ∈ N (M) is actually an eigenvector associated with
an eigenvalue of zero. We now take advantage of the Rank-Nullity Theorem,
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If A is some n×m matrix, then

rank(A) + dim(Ker(A)) = m (14)

[Thm. 1]

So, since we already know rank(M) = 1, it follows that dim(N (M)) = n − 1. This
implies there are n−1 eigenvectors associated with λ = 0, meaning it has a multiplicity
of n− 1. Therefore we have λ = −→v T−→v , with a multiplicity of one, and λ = 0 with a
multiplicity of n−1. There can be no more eigenvalues, since the sum of multiplicities
must be less than or equal to n.
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3. (2 points). Let A ∈ IRn×n be a symmetric matrix. Show that if −→v1,
−→v2 ∈ IRn

are two eigenvectors of A associated to distinct eigenvalues λ1 6= λ2 (A−→v1 =
λ1
−→v1 and A−→v2 = λ2

−→v2), then −→v1⊥−→v2.

Equivalently, we must show that 〈−→v1,
−→v2〉 = 0 since 〈−→v1,

−→v2〉 = 0 ⇐⇒ −→v1⊥−→v2. We
begin with an expression to show a useful equality. Within, we exploit the fact that
A is symmetric, such that A = AT ,

λ1〈−→v1,
−→v2〉 = 〈λ1−→v1,

−→v2〉 = 〈A−→v1,
−→v2〉 = (A−→v1)T · −→v2

= −→v1
TAT · −→v2 = −→v1

T (A · −→v2) = 〈−→v1, A
−→v2〉

= 〈−→v1, λ2
−→v2〉 = λ2〈−→v1,

−→v2〉
(15)

So, we are left with the resulting equality,

λ1〈−→v1,
−→v2〉 = λ2〈−→v1,

−→v2〉 (16)

(λ1 − λ2)〈−→v1,
−→v2〉 = 0 (17)

At which point we know either λ1 − λ2 = 0 or 〈−→v1,
−→v2〉 = 0. However, from the state-

ment of the problem we know that λ1 6= λ2, so it follows that,

〈−→v1,
−→v2〉 = 0 ⇐⇒ −→v1⊥−→v2 (18)

And therefore, if −→v1,
−→v2 ∈ IRn are two eigenvectors of a symmetric matrix A associated

to distinct eigenvalues λ1 6= λ2, then −→v1⊥−→v2.
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4. (4 points). Let A ∈ IRn×n. We assume that there exists a basis (−→v1, ...,
−→vn) of

IRn consisting of eigenvectors of A:

A−→vi = λi
−→vi

for all i ∈ {1, ..., n}. We assume that

λ1 > |λi| for all i ∈ {2, ..., n}

We consider the following algorithm:

• Initialize x0 ∈ IRn.

• Perform the updates: xt+1 = Axt

||Axt||

(a) Show that for all t ≥ 1,

xt = Atx0

||Atx0||

We show this via induction (vector indicators removed for convenience). First,
we prove the base case. For x1, we have,

x1 =
A1x0
||A1x0||

=
Ax0
||Ax0||

(19)

And by the update method, with t = 0, we find,

x0+1 = x1 =
Ax0
||Ax0||

(20)

Thus, we have shown the base case. Now, for the inductive step, we find that the
update method is given by,

xt+1 =
Axt
||Axt||

=
A Atx0

||Atx0||

||A Atx0

||Atx0|| ||
=

1
||Atx0||

1
||Atx0||

At+1x0
||At+1x0||

=
At+1x0
||At+1x0||

(21)

This is the result we hoped for, because it is equivalent to,

x(t+1) =
A(t+1)x0
||A(t+1)x0||

(22)
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Thus we have shown the inductive step, because we guessed the method worked
for every xt, and proved that it worked for every xt+1.

(b) Assume that −→x0 is a unit vector (||−→x0|| = 1) whose direction is chosen
uniformly at random (this basically means that all the possible direc-
tions for −→x0 are equally likely to be chosen). Let (α1, ..., αn) be the
coordinates of −→x0 in the basis (−→v1, ...,

−→vn). Explain we have α1 6= 0 with
probability 1. You do not have to do a rigorous proof of that, just give
an intuitive argument.

Given a basis (−→v1, ...,
−→vn), we know that −→x0 lies somewhere on an n-dimensional

hyper-sphere of radius one. For example, in IR3, −→x0 would lie somewhere on the
unit sphere. Now, if α1 were to be zero, this would imply that −→x0 in (−→v1, ...,

−→vn)
has no component along −→v1. In other words, −→x0 would be relegated to an (n−1)-
dimensional subspace, because the vectors in (−→v1, ...,

−→vn) are linearly independent.
In IR3, −→x0 would be bound to a plane, which intersects the hyper-sphere. −→x0 would
therefore have to lie along the intersection of the sphere and the plane. This re-
gion has zero area, and therefore, the probability of lying in this region is zero.
In the abstract this reasoning holds, though has no easily interpreted geometric
analog. The probability of a vector lying at the intersection of a n-dimensional
space and an (n−1)-dimensional subspace will always be zero. Therefore α1 6= 0
with probability 1.

(c) Show that as t→∞,

xt → α1
−→v1

||α1
−→v1||

||Axt|| → λ1

We know that as t→∞, we have (vector indicators removed for convenience),

xt =
Atx0
||Atx0||

=
At(α1v1 + ...+ αnvn)

||At(α1v1 + ...+ αnvn)||
=

(α1λ
t
1v1 + ...+ αnλ

t
nvn)

||(α1λt1v1 + ...+ αnλtnvn)||

=
α1λ

t
1(v1 + ...+ αn

α1

(
λn

λ1

)t
vn)

α1λt1||(v1 + ...+ αn

α1

(
λn

λ1

)t
vn)||

→ α1
−→v1

||α1
−→v1||

(23)

Where the we can make the final simplification since we know λ1 > |λi|. Now,
given that we found the value of xt as t→∞, we see that at t→∞,
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||Axt|| → ||A
α1
−→v1

||α1
−→v1||
|| = α1||A−→v1||

α1||−→v1||
=
||λ1−→v1||
||−→v1||

= λ1 (24)
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