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October 23rd, 2020

1. (2 points). We say that a symmetric matrix M ∈ IRn×n is positive definite
if for all non-zero x ∈ IRn,

−→x TM−→x > 0

If a matrix M is positive definite, then M is also positive semi-definite, but
the converse is not true. One of the goals of this problem is to prove one
of the implications of Proposition 1.2 of the notes (Lecture 7). You are of
course not allowed to use this proposition to solve this problem.

(a) Let M ∈ IRn×n be a positive definite matrix. Show that its eigenvalues
are all strictly positive and that M is invertible.

We begin by showing that all of the eigenvalues of matrix M are positive. For
any eigenvalue-eigenvector pair, we have the following,

M−→v = λ−→v (1)

Then we can observe the following implications. For any eigenvector −→v ,

−→v TM−→v > 0 (2)

−→v Tλ−→v > 0 (3)

λ||−→v ||2 > 0 (4)

By the statement of the problem, we know that −→v 6= −→0 , and therefore ||−→v ||2 > 0.
In order to maintain this equality, it follows that λ > 0. This statement holds for
any eigenvalue-eigenvector pair of M , meaning that if M ∈ IRn×n is a positive
definite matrix its eigenvalues are all strictly positive. Again, given the equation
from (1), and the fact that all λ > 0 that are associated to M , we have that there
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is no λ = 0. Furthermore, this implies that there is no nontrivial −→v such that
M−→v = 0. The kernel of M is therefore empty, which implies that the matrix M
is invertible.

(b) Let M ∈ IRn×n be a symmetric matrix. Show that there exists α > 0
such that the matrix M + αIdn is positive definite.

First, we set out to show that if all of the eigenvalues of a symmetric matrix
M are positive, then M must be a positive definite matrix. Note the Spectral
Theorem,

Let A ∈ IRn×n be a symmetric matrix. Then there exists an orthogonal matrix
P and a diagonal matrix D of sizes n× n, such that,

A = PDPT

[Prop. 1]

Therefore, it stands to reason that we can represent M as M = PDPT . It follows
readily that,

−→x TM−→x = −→x TPDPT−→x = −→x TPD(−→x TP )T (5)

Now since D is a diagonal matrix populated with the eigenvalues of M (by Spec-
tral Theory), and −→x TP ∈ IR1×n, we may as well write −→x TP as a vector −→y T .
Then,

−→x TPD(−→x TP )T = −→y TD−→y = λ1y
2
1 + ...+ λny

2
n (6)

Then, by the assumption that all of the eigenvalues of M are positive, we are left
with,

−→x TM−→x = λ1y
2
1 + ...+ λny

2
n > 0 (7)

This proves that given a symmetric matrix M , where all of the eigenvalues of M
are positive, M must be positive-definite.

We know that M has a set of real eigenvalues because it is symmetric. Further-
more, it stands to reason that at least one of the eigenvalues associated with M is
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negative, since if all of the eigenvalues of M were positive, it would be a positive
definite matrix. Suppose that we find the smallest eigenvector of M such that,

M−→v = λmin
−→v (8)

It stands to reason that we must shift λmin such that λmin > 0. If we take
α > |λmin|, then we have,

(A+ αIdn)−→v = (λmin + α)−→v (9)

Where λmin +α > 0, thereby ensuring that all of the new, shifted, eigenvalues of
M + αIdn are all greater than zero.
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2. (3 points). Using PCA, we reduce the dimension of a dataset −→a1, ...,
−→an ∈ IRd

of mean zero, to get a dimensionally reduced dataset
−→
b1, ...,

−→
bn ∈ IRk, for

some 1 ≤ k ≤ d.

(a) Show that the dataset
−→
b1, ...,

−→
bn is centered:

∑n
i=1

−→
bi =

−→
0

We can express the dimensionally reduced data set
−→
b1, ...,

−→
bn ∈ IRk as inner

products of our original set with vectors, −→a1, ...,
−→an ∈ IRd, with the directions of

maximal variance, −→v1, ...,
−→vk ∈ IRd. In other words, the vectors

−→
b1, ...,

−→
bn ∈ IRk

can be expressed as,

−→
b1, ...,

−→
bn =

〈
−→v1,
−→a1〉

...
〈−→vk,−→a1〉

 , ... ,
〈
−→v1,
−→an〉

...
〈−→vk,−→an〉

 (10)

Then, it becomes clear that,

n∑
i=1

−→
bi =


∑n
i=1〈
−→v1,
−→ai〉

...∑n
i=1〈
−→vk,−→ai〉

 =

〈
−→v1,

∑n
i=1
−→ai〉

...
〈−→vk,

∑n
i=1
−→ai〉

 =

〈
−→v1, 0〉

...
〈−→vk, 0〉

 =

0
...
0

 =
−→
0 (11)

(b) Show that for all i, j ∈ {1, ..., n}, we have

||
−→
bi −

−→
bj || ≤ ||−→ai −−→aj ||

This means that PCA shrinks the distances.

We can express the difference
−→
bi −

−→
bj as,

−→
bi −

−→
bj =

〈
−→v1,
−→ai〉 − 〈−→v1,

−→aj〉
...

〈−→vk,−→ai〉 − 〈−→vk,−→aj〉

 =

〈
−→v1,
−→ai −−→aj〉

...
〈−→vk,−→ai −−→aj〉

 (12)

And so it follows that,

||
−→
bi −

−→
bj || =

√
(−→v1

T (−→ai −−→aj))2 + ...+ (−→vkT (−→ai −−→aj))2 (13)
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Similarly, we can express the magnitude of the difference −→ai −−→aj as,

||−→ai −−→aj || =
√

(−→ai1 −
−→aj1)2 + ...+ (−→aid −

−→ajd)2 (14)

However, we know that

k∑
e=1

(−→veT (−→ai −−→aj))2 = (−→ai1 −
−→aj1)2 + ...+ (−→aik −

−→ajk)2 (15)

And the final expression becomes,

||
−→
bi −

−→
bj || =

√
(−→ai1 −

−→aj1)2 + ...+ (−→aik −
−→ajk)2

≤
√

(−→ai1 −
−→aj1)2 + ...+ (−→aid −

−→ajd)2 = ||−→ai −−→aj ||
(16)

Which must be the case since 1 ≤ k ≤ d. So we have shown the expression.

(c) For i ∈ {1, ..., k} we let

f (i) = (b1,i, b2,i, ..., bn,i) ∈ IRn

be the vector made of all i−th components of the vectors b1, ..., bn. Show
that for i 6= j, f (i)⊥f (j). This means that the new features computed
using PCA are uncorrelated.

PCA implies that we can represent the covariance matrix, X ∈ IRk×k, of some
data matrix, call it A ∈ IRn×k, as an eigenvalue decomposition such that X =
UΛUT , where U contains the eigenvectors corresponding to our new space asso-
ciated with our principle components. As such, we can represent the data in our
new space as Y = AU , where every data point is now represented in the basis of
the eigenvectors in U .

Alternatively, we can examine the coordinate of every data point in each principle
direction. In other words,

f (i) = A−→ui (17)
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Furthermore, it becomes clear that,

A−→ui⊥A−→uj =⇒ f (i)⊥ f (j) (18)

And, since we know U is an orthonormal matrix, −→ui⊥−→uj for i 6= j. So, for i 6= j,

〈A−→ui, A−→uj〉 = −→uiTATA−→uj = −→uiTUΛUT−→uj = 0 (19)

Which implies that Aui⊥Auj , and furthermore, that f (i)⊥ f (j) for all i 6= j.
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3. (2 points). Let A ∈ IRn×m. The Singular Values Decomposition (SVD) tells
us that there exists two orthogonal matrices U ∈ IRn×n and V ∈ IRm×m and
a matrix Σ ∈ IRn×m such that Σ1,1 ≥ Σ2,2 ≥ ... ≥ 0 and Σi,j = 0 for i 6= j

A = UΣV T

The columns u1, ..., un of U (respectively the columns v1, ..., vm of V ) are
called the left (resp. right) singular vectors of A. The non-negative num-
bers σi = Σi,i are the singular values of A. Moreover we also know that
r = rank(A) = num{i|Σi,i 6= 0}.

(a) Let Ũ =

−→u1 ... −→ur

 ∈ IRn×r, Ṽ =

−→v1 ... −→vr

 ∈ IRm×r and Σ̃ =

Diag(σ1, ..., σr) ∈ IRr×r. Show that A = Ũ Σ̃Ṽ T

We begin by expressing A in an alternative way - as a sum of rank one matrices.
Observe that,

Σ = D1,1 + ...+Dmin(n,m),min(n,m) (20)

Where Di,i is an n×m matrix where every entry is zero except for the value at
index (i, i), where the entry is equal to Σi,i = σi, since we know that Σi,j has a
value only when i = j, and is 0 otherwise. Therefore, we can express A as,

A = UΣV T = U(D1,1 + ...+Dmin(n,m),min(n,m))V
T

= U(D1,1)V T + ...+ U(Dmin(n,m),min(n,m))V
T

=

min(n,m)∑
i=1

UDi,iV
T =

min(n,m)∑
i=1

σi
−→ui−→viT

(21)

However, we know that r = rank(A) = num{i|Σi,i 6= 0} and that Σ1,1 ≥ Σ2,2 ≥
... ≥ 0, meaning any values of Σi,i = 0 occur in the final positions of the diag-
onal, we know that Σr+1,r+1 = ... = Σmin(n,m),min(n,m) = 0. This implies that
σr+1 = ... = σmin(n,m) = 0. We then can rewrite the summation as,

A = UΣV T =

r∑
i=1

σi
−→ui−→viT (22)
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Recomposing this result into matrix form obviously yields A = Ũ Σ̃Ṽ T .

(b) Give orthonormal bases of Ker(A) and Im(A) in terms of the singular
vectors u1, ..., un, v1, ..., vm.

The vectors −→u1, ...,
−→ur will form a basis for the Im(A). It is evident that the vec-

tors −→u1, ...,
−→ur are linearly independent, since U is orthonormal, and furthermore

are in the Im(A) since A−→xi = −→ui when −→xi =
−→vi

σi
since we have,

−→ui =
A−→vi
σi

(23)

Furthermore, there can only be r vectors in the basis of the Im(A) since dim(Im(A)) =
r. So the vectors u1, ..., ur will form a basis for the Im(A).

By the rank-nullity theorem, the dimension of the kernel is m− r. So the vectors
−−→vr+1, ...,

−→vm form a basis of the kernel. We know this to be the case because
−−→vr+1, ...,

−→vm are linearly independent, since V is orthonormal, and further more

are in the Ker(A), since −→vi =
−→
0 when i ∈ {r+ 1, ...,m}. This is clearly the case,

since,

A−→vi = UΣV T−→vi =
−→
0 (24)

When i ∈ {r + 1, ...,m}. Furthermore, there can only be m − r vectors in the
basis of the Ker(A) since dim(Ker(A)) = m− r. So the vectors −−→vr+1, ...,

−→vm will
form a basis for the Ker(A).
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4. (3 points). You have been given a mysterious dataset that may contain
important informations! This dataset is a collection of n = 6344 points
of dimension d = 1000. Investigate the structure of this dataset using
PCA/plots... , and find out if the dataset contains any information.

The attached Python file fully describes this problem.
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10/25/2020 mysterious data

localhost:8888/nbconvert/html/mysterious data.ipynb?download=false 1/3

[69258.88218789  1175.26858134   244.45970366  2150.59726671 
  2692.39014817] 
[69258.88218789  1175.26858134   244.45970366  2150.59726671 
  2692.39014817] 

[<matplotlib.lines.Line2D at 0x26789349080>]

In [77]: import numpy as np 
D = np.loadtxt(r'mysterious_data.txt') 

In [78]: ## We need to center each column, because each column represents a feature (dimension) 
 
centered_D = D 
for i in range(len(D[0,:])): 
    centered_D[:,i] = D[:,i] - np.mean(D[:,i]) 

In [79]: ## Now we compute the covariance matrix using our newly centered data 
 
cov = np.matmul(centered_D.T,centered_D) 

In [80]: ## Here, we find the eigenvalues and eigenvectors of the covariance matrix 
 
vals, vect = np.linalg.eigh(cov) 

In [81]: ## Here we construct the diagonal matrix holding the eigenvalues, and the orthonormal m
 
E = np.diag(np.flip(vals)) 
U = vect[:,::-1] 

In [82]: ## This confirms that C = UEU.T  
 
temp = np.matmul(U, E) 
check = np.matmul(temp, U.T) 
print(check[0][0:5]) 
print(cov[0][0:5]) 

In [83]: ## Here we plot the first 10 eigenvalues to determine significance (only the firs two a
 
import matplotlib.pyplot as plt 
plt.figure(figsize=(10,10)) 
plt.plot(list(range(len(vals)))[0:10],np.flip(vals)[0:10]) 

Out[83]:



10/25/2020 mysterious data

localhost:8888/nbconvert/html/mysterious data.ipynb?download=false 2/3

<matplotlib.collections.PathCollection at 0x267878157f0>

In [84]: ## Here, we transform the data into our new space, defined by the orthonormal basis, U 
 
Y = np.matmul(centered_D, U) 

In [85]: ## Here we take the first two dimensions of the data in our new space 
 
ys = [-1*Y[:,0:2][i][0] for i in range(len(Y[:,0:2]))] 
xs = [-1*Y[:,0:2][i][1] for i in range(len(Y[:,0:2]))] 

In [86]: ## Here we plot those first two dimensions 
 
plt.figure(figsize=(14,10)) 
plt.scatter(ys,xs) 

Out[86]:



10/25/2020 mysterious data

localhost:8888/nbconvert/html/mysterious data.ipynb?download=false 3/3


