
DS-GA 1014 - Homework 8

Eric Niblock

November 2nd, 2020

1. (2 points). For any two matrices A,B ∈ IRn×m we define

〈A,B〉F = Tr(ATB)

(a) Show that 〈·, ·〉F is an inner-product on IRn×m, i.e. that it verifies the
points of the definition 2.1 of Lecture 4. 〈·, ·〉F is called the Frobenius
inner-product.

First, we introduce the necessary definition regarding inner products.

Let V be a vector space. An inner product on V is a function 〈·, ·〉 from V ×V
to IR that verifies the following points:

(1) Symmetry: 〈−→v ,−→u 〉 = 〈−→u ,−→v 〉 for all −→u ,−→v ∈ V

(2) Linearity: 〈−→u +−→v ,−→w〉 = 〈−→u ,−→w〉 + 〈−→v ,−→w〉 and 〈α−→v ,−→w〉 = α〈−→v ,−→w〉
for all −→u ,−→v ,−→w ∈ V and α ∈ IR

(3) Positive definiteness: 〈−→v ,−→v 〉 ≥ 0 with equality if and only if −→v =
−→
0

[Def. 1]

Now we begin to show that these conditions are satisfied. Concerning (1), it first
must be clear that Tr(M) = Tr(MT ) for any M ∈ IRk×k. This is true since,

Tr(M) =

k∑
i=1

Mi,i (1)

And the act of transposing a square matrix does not change the diagonal terms.
Since ATB ∈ IRm×m, we can write the following,
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〈A,B〉F = Tr(ATB) = Tr((ATB)T ) = Tr(BTA) = 〈B,A〉F (2)

This satisfies condition (1). Concerning (2), if we have A,B,C ∈ IRn×m, then we
have,

〈A+B,C〉F = Tr((A+B)TC) = Tr((AT +BT )C)

= Tr(ATC +BTC) = Tr(ATC) + Tr(BTC)

= 〈A,C〉F + 〈B,C〉F

(3)

Where the second line follows from the fact that the trace is a linear mapping.
We employ this property again, concerning scalar multiplication. We have that,

〈αA,B〉F = Tr(αATB) = αTr(ATB) = α〈A,B〉F (4)

This suffices to show (2). Concerning (3), we know that,

〈A,A〉F = Tr(ATA) =

m∑
i=1

(ATA)i,i =

m∑
i=1

n∑
j=1

ATi,jAj,i

=

m∑
i=1

n∑
j=1

A2
i,j ≥ 0

(5)

And furthermore, since all A2
i,j ≥ 0, we have that the sum of all A2

i,j = 0 only
when all Ai,j = 0, meaning would have to be zero A = 0. This satisfies (3).
Therefore the Frobenius inner-product is a valid inner product.

(b) The induced norm ||A||F =
√
Tr(ATA) is called the Frobenius norm.

Show that

||A||F =

√∑min(n,m)
i=1 σ2

i

where σ1, ..., σmin(n,m) are the singular values of A.
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First we note that Tr(AB) = Tr(BA) for A ∈ IRn×m and B ∈ IRm×n. Further-
more, we know that we can express A = UΣV T , where U and V are orthonormal
and Σ is diagonal. So,

||A||2F = Tr((UΣV T )T (UΣV T )) = Tr(V ΣTUTUΣV T )

= Tr(V ΣTΣV T ) = Tr((V ΣT )(ΣV T ))
(6)

Then we can use the property that Tr(AB) = Tr(BA) so that,

Tr((V ΣT )(ΣV T )) = Tr(ΣV TV ΣT ) = Tr(ΣΣT ) (7)

And since Σ is diagonal, the result of ΣΣT is simply a diagonal matrix with all
of the terms along the main diagonal being the square of the terms on the main
diagonal of Σ, which are simply the singular values of Σ. In summary,

||A||2F = Tr(ΣΣT ) =

min(n,m)∑
i=1

σ2
i (8)

So it is then clear that,

||A||F =

√√√√min(n,m)∑
i=1

σ2
i (9)
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2. (2 points). Let A be a n× n matrix.

(a) Show that A is invertible if and only if all the singular values of A are
non-zero.

We must show the implication in both directions. First, we show that if all the
singular values of A are non-zero, then A is invertible.

The relationship between the singular values and eigenvalues is given by, σi =√
λi, where the eigenvalues correspond to ATA and the singular values correspond

to A. Any n × n matrix A can be decomposed via SVD, yielding, A = UΣV T ,
where in this case, Σ1,1 ≥ ... ≥ Σn,n > 0. Furthermore, we know that,

−→ui =
A−→vi
σi

(10)

And that u1, ..., ur will form a basis for the Im(A). However, since σ1 ≥ ... ≥
σn > 0, we have that u1, ..., ur = u1, ..., un, and r = n. This implies that matrix
A is of full rank, and any square matrix of full rank is invertible.

Now we must show that if A is invertible, then the singular values of A are non-
zero. Since A is invertible, we have rank(A) = n. That means rank(UΣV T ) =
n. We know that rank(U) = rank(V T ) = n, since U and V T are invertible
and square, of size n × n. Therefore, we know that rank(Σ) = n, otherwise
rank(UΣV T ) < n. So, we conclude that Σ must be composed of all non-zero
singular values, otherwise we would have rank(Σ) < n. Thus, if A is invertible,
then the singular values of A are non-zero.

Having shown the implication in both directions, we have shown that A is invert-
ible if and only if all the singular values of A are non-zero.

(b) We assume here that A is invertible. Show that

σ1(A)σ1(A−1) ≥ 1

where σ1(A) and σ1(A−1) denote the largest singular value of respec-
tively A and A−1.

Given that A is invertible, all of the singular values of A are non-zero. Since A is
invertible, we have A = UΣV T , but also A−1 = (UΣV T )−1 = (V T )−1Σ−1U−1.
Since V and U are orthonormal, we have the further simplification that A−1 =
V Σ−1UT . Now the inverse of a diagonal matrix is simply the original diagonal
matrix, with each entry along the main diagonal being replaced by its reciprocal.
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This is evident by the fact that then Σi,iΣ
−1
i,i = 1 and hence ΣΣ−1 = Id. There-

fore, if A is invertible, all of the singular values of A−1 are simply the reciprocals
of the singular values of A.

As was just explained, the singular values of A−1 are the reciprocals of the sin-
gular values of A. Call σ1 ≥ ... ≥ σn > 0 the singular values of A. Then,
0 < 1

σ1
≤ ... ≤ 1

σn
are the singular values of A−1. So, we have,

σ1(A)σ1(A−1) = σ1

(
1

σn

)
=
σ1
σn
≥ 1 (11)

Which is obviously true, since we know that σ1 ≥ σn > 0.
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3. (2 points). Let A ∈ IRn×n be the adjacency matrix of a graph G. We define a
path from a node i1 to a node ik as a succession of nodes i1, i2, ..., ik such that

i1 ∼ i2 ∼ ... ∼ ik−1 ∼ ik, i.e. Ai1,i2 = Ai2,i3 = ... = Aik−1,ik = 1

The nodes ij of the path do not need to be distinct. We say that the path
i1, i2, ..., ik has length k − 1 which is the number of edges in this path. The
goal of this exercise is to prove that for all k ≥ 1

H(k): For all i, j ∈ {1, ..., n} the number of paths of length k from i to j is (Ak)i,j

We will prove that H(k) holds for all k by induction, that is, we will first
prove that H(1) is true. Then we will prove that if H(k) is true for some k,
then H(k + 1) is true. Combining these two things, we get that H(2) holds,
hence H(3) holds, hence H(4) holds... and therefore H(k) will be true for all
k ≥ 1.

(a) Show that H(1) is true.

H(1) is clearly true. The number of paths of length 1 from node i to node j is
given by (A1)i,j = (A)i,j which is simply the i, j entry of the adjacency matrix
A. If the i, j entry of the adjacency matrix A is 1, this means the node i and
node j are connected directly by an edge - the length between them is therefore
1. Otherwise entry i, j is zero. There cannot exist a direct connection between
nodes i and j that has a length other than 1. Therefore, H(1) is clearly true.

(b) Show that if H(k) is true for some k, then H(k + 1) is also true.

We make the assumption that H(k) is true for some k. The problem we face is
determining the length between node i and node j. If we consider any vertex m
such that m is connected directly to j by an edge, and indirectly to node i (or
directly), then we know the length between node i and node m is k. Then, if we
consider all of the nodes m where this is setup is possible, we find the total number
of possible paths of length k+1 from i to j. Mathematically, we can write this as,

∑
m∈{1,...,n}

(Ak)i,m(A)m,j = (Ak+1)i,j (12)

However, this is precisely the result we hoped to find. Thus the induction is
complete.
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4. (4 points). The goal of this problem is to use spectral clustering tech-
niques on real data. The file adjacency.txt contains the adjacency matrix
of a graph taken from a social network. This graphs has n = 328 nodes (that
corresponds to users). An edge between user i and user j means that i and
j are “friends” in the social network. The notebook friends.ipynb contains
functions to read the adjacency matrix as well as instructions/questions.

While we focused in the lectures (and in the notes) on the graph Laplacian

L = D −A

where A is the adjacency matrix of the graph, and D = Diag(deg(1), ..., deg(n))
is the degree matrix, we will use here the “normalized Laplacian” (instead
of L)

Lnorm = D−
1/2LD−

1/2 = Id−D−1/2AD−
1/2

where D−1/2 = Diag(deg(1)−1/2, ..., deg(n)−1/2). The reason for using a differ-
ent Laplacian is that then “unnormalized Laplacian” L does not perform
well when the degrees in the graph are very broadly distributed, i.e. very
heterogeneous. In such situations, the normalized Laplacian Lnorm is sup-
posed to lead to a more consistent clustering.

Below, you will find the attached python file, containing all of the work for this ques-
tion.
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11/5/2020 friends - Jupyter Notebook

localhost:8888/notebooks/friends.ipynb# 1/5

In [1]:

In [2]:

As you can see above, the adjacency matrix is relatively large (328x328): there are 328 persons in
the graph. In order to visualize this adjacency matrix, it is convenient to use the 'imshow' function.
This plots the 328x328 image where the pixel (i,j) is black if and only if A[i,j]=1.

In [3]:

(a) Construct in the cell below the degree matrix:

the Laplacian matrix:
= deg(𝑖) and = 0  if 𝑖 ≠ 𝑗,𝐷𝑖,𝑖 𝐷𝑖,𝑗

There are 328 nodes in the graph. 

Out[3]: <matplotlib.image.AxesImage at 0x2871389bc88>

%matplotlib inline
import matplotlib
import numpy as np
import matplotlib.pyplot as plot
from sklearn.cluster import KMeans

# Reads the adjacency matrix from file
A=np.loadtxt('adjacency.txt')
print(f'There are {A.shape[0]} nodes in the graph.')

plot.figure(figsize=(8,8))
plot.imshow(A,aspect='equal',cmap='Greys',  interpolation='none')



11/5/2020 friends - Jupyter Notebook

localhost:8888/notebooks/friends.ipynb# 2/5

and the normalized Laplacian matrix:
𝐿 = 𝐷 − 𝐴

= 𝐿 .𝐿norm 𝐷−1/2 𝐷−1/2

In [84]:

(b) Using the command 'linalg.eigh' from numpy, compute the eigenvalues and the eigenvectors of 
.𝐿norm

In [108]:

(c) We would like to cluster the nodes (i.e. the users) in 3 groups. Using the eigenvectors of ,
assign to each node a point in , exactly as in 'Algorithm 1' of the notes where you replace  by 

. Plot these points using the 'scatter' function of matplotlib.

𝐿norm

ℝ
2 𝐿

𝐿norm

In [109]:

diags = np.array([sum(A[:,i]) for i in range(len(A))])
D = np.diag(diags)
 
L = D-A
 
sqrt_diags = 1/diags**0.5
Dsq = np.diag(sqrt_diags)
 
L_norm = np.matmul(L,Dsq)
L_norm = np.matmul(Dsq,L_norm)

vals, vect = np.linalg.eigh(L_norm)

R2_nodes = vect[:,1:3]



11/5/2020 friends - Jupyter Notebook

localhost:8888/notebooks/friends.ipynb# 3/5

In [110]:

Out[110]: <matplotlib.collections.PathCollection at 0x28718644ac8>

import matplotlib.pyplot as plt
 
plt.figure(figsize=(10,10))
plt.scatter(R2_nodes[:,0],R2_nodes[:,1])



11/5/2020 friends - Jupyter Notebook

localhost:8888/notebooks/friends.ipynb# 4/5

(d) Using the K-means algorithm (use the built-in function from scikit-learn), cluster the
embeddings in  of the nodes in 3 groups.ℝ

2

In [114]:

Out[114]: <matplotlib.collections.PathCollection at 0x2871ad0b5f8>

# Replace ??? by the matrix of the points computed in (c)
# Each row corresponds to a data point
kmeans = KMeans(n_clusters=3, random_state=0).fit(R2_nodes)
labels=kmeans.labels_
# labels contains the membership of each node 0,1 or 2
 
# This colors each point of R^2 according to its label
# replace "x/y coordinates" by the coordinates you computed in (c)
plt.figure(figsize=(12,10))
plt.scatter( R2_nodes[:,0], R2_nodes[:,1], c = labels)



11/5/2020 friends - Jupyter Notebook

localhost:8888/notebooks/friends.ipynb# 5/5

(e) Re-order the adjacency matrix according to the clusters computed in the previous question.
That is, reorder the columns and rows of  to obtain a new adjacency matrix (that represents of
course the same graph) such that the  nodes of the first cluster correspond to the first 
rows/columns, the  nodes of the second cluster correspond to the next  rows/columns, and
the  nodes of the third cluster correspond to the last  rows/columns. Plot the reordered
adjacency matrix using 'imshow'.

𝐴

𝑛1 𝑛1
𝑛2 𝑛2

𝑛3 𝑛3

In [115]:

In [116]:

In [117]:

Out[117]: <matplotlib.image.AxesImage at 0x28719b8e780>

ind = list(range(len(labels)))
sort_labels, sort_ind = (list(t) for t in zip(*sorted(zip(labels, ind))))

reorderedA = A[sort_ind,:] ## Move all rows
reorderedA = reorderedA[:,sort_ind] ## Move all columns

plot.figure(figsize=(8,8))
plot.imshow(reorderedA,aspect='equal',cmap='Greys',  interpolation='none')


