DS-GA 1014 - Homework 9

Eric Niblock
November 6th, 2020

1. (2 points). Let f: R® — IR be a convex function. We assume that the mini-

mum m < min?emnf(?) of f on IR" is finite, and that the set of minimizers
of f

ME (T e R F(F) = m}
is non-empty.

(a) Show that M is a convex set.

Since f is convex, we have that for any ?, ? € R*, and « € [0, 1],

f@X+(1-a)Y) <af(X)+(1—a)f(¥) (1)

Now suppose we choose two vectors from M and call them 71, 72. We know
that m = f(¥1) = f(V3) since this is a condition of being in set M. Further-
more, since f is convex, we have,

fla¥Vi+ (1 —a)Va) <af(V1)+ (1 —a)f(Va) (2)
f(a71 +(1- a)72) <am+ (1-a)m (3)
flavi+(1—-—a)Vy)<m (4)

However, f(aV1+ (1—a)Vs3) < m is not possible, since we defined m to be the
minimum value of f for all ¥ (and the set of all ¥ includes a V1 4 (1 — &) V).
Hence, it must be the case that f(a V1 + (1 — a)V2) = m.

Note the original goal is to prove that M is a convex set, which is true if for any
V1, Vo€ S, and a € [0, 1], we have,



(b)

avVi+(l—a)Vses (5)

The condition on @V + (1 — a) V5 being in S is such that,

f(a?l + (1 - 04)72) =m (6)

Which has already been shown. Thus M is a convex set.

Show that if f is strictly convex, then M has only one element.

We will proceed by contradiction. Suppose that M has two or more elements. If
this is the case then there exists a v, #* V5 with 71, V5 € R" such that,

f(71) = f(72) =m (7)

Since this is a condition of being in M. Furthermore, we have the definition of
strict convexity, for any X,y € IR®, and a € (0,1), we have

f@X +(1-a)¥) <af(X)+ 1 -a)f(¥) (8)

Therefore, we have,

flaVi+(1—a)Vy) <af(V1)+(1—a)V, (9)
flaVi+(1-—a)Vs)<m (10)

However, this cannot be the case, because then, f(a V1 + (1 — a)Vs3) would be
less than the minimum of f. Contradiction. Therefore, there cannot exist more
than one element in M if f is strictly convex.



%
2. (2 points). Let M € R**® be a symmetric matrix, b € IR* and ¢ € R. For
X € R" we define

fla)=XTMX + (?,ﬁ) +c

f is called a quadratic function.

(a) Compute the gradient Vf(X) and the Hessian Hf(?) at all X € IR".
Show that f is convex if and only if M is positive semi-definite.

We can re-write f(X) as,

FR)=XTMR +RTD +c (11)

Then we have,

VIR)=V(RTMR +RTD +0¢)
—V(RTMR) + V(XTD) (12)
—_oMX + b

And furthermore, we can calculate the Hessian by taking the Jabobian of the
gradient,

Hy(X) = J[VF(X)] =2M (13)

We also have the following proposition,

Let f : IR* — IR be a twice-differentiable function. We denote by Hy the
Hessian matriz of f. Then f is convex if and only if for all x € R*, Hy(x)
is positive semi-definite. [Prop. 1]

Therefore, if we show that when M is positive semi-definite, it is equivalent to
Hy being positive semi-definite, we will have proved the original statement. If M
is positive semi-definite, we have,

XTMX >0 (14)



(b)

XT(2M)X >2(0) =0 (15)
XTHH(X)X >0 (16)

Therefore, when M is positive semi-definite, this is equivalent to H f(?) being
positive semi-definite, and we achieve the desired result: f is convex if and only
if M is positive semi-definite.

In this question, we assume M to be positive semi-definite. Show that
f admits a minimizer if and only if b € Im(M).

The fact that f admits a minimizer is equivalent to saying that V f (?) = 0 for
some X. Equivalently, it must be the case that for some

VFX)=0 (17)

OMRE + b =0 (18)

2MRX = - b (19)
b

MY = -5 (20)

%
This equation is equivalent to the notion that b is in the image of M, since if
it were not, there would be no X that satisfies this equation. Since all of the
statements used are equivalencies, we have that f admits a minimizer if and only

it b e Im(M).



3. (3 points). We say that a function f:IR" — IR is strongly convex if there
exists a > 0 such that the function X — f(z) — %||?||2 is convex. In other
words, f is strongly convex if there exists a > 0 and a convex function
g :IR" — IR such that

f(x) = g(z) + §[IX]?

(a) Show that a strongly convex function is strictly convex. (Hint: start
by showing that X — || X||? is strictly convex).

First, we define a function,

hR) = SIIRIP = S(X. %) = 5XTX (21)

Where it is evident that we have,

And furthermore, we have the following proposition,
If for all x € R™, the Hessian Hy(x) is positive definite, then f is strictly
convex. [Prop. 2]

Additionally, if we are to show that Hj(x) is positive definite, then it must be
the case that,

RTH (@)% > 0 (24)

_>
=0

For all X € R (with the exception of X ). So then we have,

X (ald,)X >0 (25)
oxXT(Id, Id,)X >0 (26)
oXT(1dY 1d,)X >0 (27)



(b)

(XT1dY)(1d,X) >0 (28)

a(Id, X)) (Id, %) >0 (29)

o|[Id, X])? > 0 (30)

ol X|* >0 (31)

Which is obviously true for all ¥ € IR® and o > 0 (with the exception of X = ﬁ)

This shows that h(x) is strictly convex.

We now have the following problem to solve. Given that g(z) is a convex function
and h(z) is a strictly convex function, show that f(x) = g(z) + h(x) is a strictly
convex function. We can write the following for all X,y € R®, and ¢ € (0,1),

fEX+(1-0)Y)=gtX+ (1 -0)Y)+h(tX +(1—-1)Y)
<tg(X)+ (1 -t)g(¥)+htX + (1 -1)¥)
<tg(X)+ (1 - t)g(¥) +th(X) + (1 - )A(Y)
=tf(X)+ (1 - f(¥)

(32)

Where the first and last lines follow directly from the definition of f, the second
line follows from g being convex, and the third line follows from h being strictly
convex. The inequality then forces,

FEX + (1= 0)F) <tf(X) + (1 -Df(F) (33)
Which proves that f, a strongly convex function, is strictly convex.

Let ¢ : R" — IR be a twice differentiable function. Show that ¢ is
strongly convex if and only if there exists a > 0 such that for all
€ IR" the eigenvalues of H,;(x) are greater or equal than a.

First we note that strong convexity on ¢ implies that,

6(X) = 9(X) + 51X (34)

Hy(X) = Hy(X) + ald, (35)



Now, (b(?) being strongly convex is equivalent to
®) - 2%
o(%) - SR (36)
Being convex, which furthermore, is equivalent to,
Hy(X) — ald, (37)

Being positive semi-definite for some choice of a (by [Proposition 1]). Then, tak-
ing the smallest eigenvalue of H¢(?), Amin and its corresponding eigenvector,
, we can write the following expressions,

Hy(2)V = Apin V (38)
H¢(x)7 —ald, ¥ = ApinV — ald, ¥ (39)
(Hy(z) — OJdn)7 = (Amin — 04)7 (40)

But since we know that when H¢(?) — ald, is convex, and therefore positive
semi-definite, all of the eigenvalues associated with it are non-negative. Therefore,
$(X) is strongly convex, if and only if all of the eigenvalues associated with
H(Zg(?) are greater than or equal to a.



4. (3 points). Let A € R™™ and ¥ € IR". For X € IR™ we define

fl@)=[|AX = ¥|?

(a) Compute the gradient Vf(z) and the Hessian Hf(z) at all X € R™.
Show that f is convex.

First, we have that,

Vi) =V (IAX = ¥|P?) =V ((AX - ¥)T(4X - ¥))

=V ((RTAT - ¥T)(AX - ¥))
=V (XTATAR - XTATY - JTAR +¥TY)

=V (XTATAR) -V (XTATY — YT AX) ()
=V (XTATAR) - ATy — (¥TA)T
=V ((AX)TAX) - 24Ty

=24TAX — 24Ty

=24T(AX - ¥)

Which would mean that the Hessian, Hy(z), is simply,
Hy(x) =J[Vf(X)] =247 A (42)

Now, from Proposition 1, we know that f is convex if H;(x) is positive semi-
definite. For all X € IR we must show that,

XTHi(2)X >0 (43)

However, this is clearly true, since,

XTHp(2)X >0 (44)
2XT(ATAX >0 (45)
2XT(ATAX >0 (46)



2(XTAT)(AX) >0
2(A4X)T(AX) >0
2||AX|[> > 0

Which is obviously true, since the norm of AX will be non-negative for all values

of X. Therefore, Hy¢(z) is positive semi-definite and f is convex.

(b) Show that if rank(A) < m, then f is not strictly convex.

If rank(A) < m, then A is not full-rank, and A(A) is populated with at least

one non-trivial X. In other words, there exists some X 2 0 such that,

AV =10

Then we have that,

F(d+V) = ||A" + V) - 72
= [|AT + AV — V|2
=[|AY - YI|* = f(¥

(50)

Now, in order to show that f is strictly convex, it must be the case that for all

vV, eR*and ¢ € (0,1).
FEV + (1 —t)U) <tf(¥)+ (1 —t)f(d)

If weuse @ = 0 and ¥V e N(4), we get,

AV + (1= 0)) = VP <AV = VP + (1 - )]|AT - ¥
LAV + (1 = AT = FII? <t]|AV = FIP + (1 - )|l AT - ¥ |
=1 <tl=FIP+ A=l =¥
=P <=

This is clearly not true. So, if rank(A) < m, f is not strictly convex.

(52)



(¢) Show that is rank(A) = m, then f is strongly convex (use the definition
and results of Problem 9.3).

If we can show that,

H(X) - old, (57)
2AT A — ald, (58)

Is positive semi-definite, then we will have shown that f is strongly convex (Prob-
lem 8b). Since rank(A) = m, we know that AT A is positive-definite, since,

XTATAX >0 (59)
(AX)TAX >0 (60)
IIAX]]? >0 (61)

Because AX # 0 for all X #* 6> Therefore, 2AT A has all positive eigenval-
ues. Taking from Problem 3b, we observe the eigenvalue equation relating to the
smallest eigenvalue of 247 A to be

(24T A — ald,))V = Appin — )V (62)

And if we choose a to be Ayin, then the smallest eigenvalue of 24T A — ald,
becomes zero. Hence, 24T A — ald,,, is positive semi-definite, and f is strongly
convex, given that rank(A) = m.
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