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1. (2 points). Let f : IRn → IR be a convex function. We assume that the mini-

mum m
def
= min−→x∈IRnf(−→x ) of f on IRn is finite, and that the set of minimizers

of f

M def
= {−→v ∈ IRn|f(−→v ) = m}

is non-empty.

(a) Show that M is a convex set.

Since f is convex, we have that for any −→x ,−→y ∈ IRn, and α ∈ [0, 1],

f(α−→x + (1− α)−→y ) ≤ αf(−→x ) + (1− α)f(−→y ) (1)

Now suppose we choose two vectors from M and call them −→v 1,
−→v 2. We know

that m = f(−→v 1) = f(−→v 2) since this is a condition of being in set M. Further-
more, since f is convex, we have,

f(α−→v 1 + (1− α)−→v 2) ≤ αf(−→v 1) + (1− α)f(−→v 2) (2)

f(α−→v 1 + (1− α)−→v 2) ≤ αm+ (1− α)m (3)

f(α−→v 1 + (1− α)−→v 2) ≤ m (4)

However, f(α−→v 1 + (1−α)−→v 2) < m is not possible, since we defined m to be the
minimum value of f for all −→v (and the set of all −→v includes α−→v 1 + (1− α)−→v 2).
Hence, it must be the case that f(α−→v 1 + (1− α)−→v 2) = m.

Note the original goal is to prove thatM is a convex set, which is true if for any
−→v 1,
−→v 2 ∈ S, and α ∈ [0, 1], we have,
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α−→v 1 + (1− α)−→v 2 ∈ S (5)

The condition on α−→v 1 + (1− α)−→v 2 being in S is such that,

f(α−→v 1 + (1− α)−→v 2) = m (6)

Which has already been shown. Thus M is a convex set.

(b) Show that if f is strictly convex, then M has only one element.

We will proceed by contradiction. Suppose thatM has two or more elements. If
this is the case then there exists a −→v 1 6= −→v 2 with −→v 1,

−→v 2 ∈ IRn such that,

f(−→v 1) = f(−→v 2) = m (7)

Since this is a condition of being in M. Furthermore, we have the definition of
strict convexity, for any −→x ,−→y ∈ IRn, and α ∈ (0, 1), we have

f(α−→x + (1− α)−→y ) < αf(−→x ) + (1− α)f(−→y ) (8)

Therefore, we have,

f(α−→v 1 + (1− α)−→v 2) < αf(−→v 1) + (1− α)−→v 2 (9)

f(α−→v 1 + (1− α)−→v 2) < m (10)

However, this cannot be the case, because then, f(α−→v 1 + (1− α)−→v 2) would be
less than the minimum of f . Contradiction. Therefore, there cannot exist more
than one element in M if f is strictly convex.
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2. (2 points). Let M ∈ IRn×n be a symmetric matrix,
−→
b ∈ IRn and c ∈ IR. For

−→x ∈ IRn we define

f(x) = −→x TM−→x + 〈−→x ,
−→
b 〉+ c

f is called a quadratic function.

(a) Compute the gradient ∇f(−→x ) and the Hessian Hf (−→x ) at all −→x ∈ IRn.
Show that f is convex if and only if M is positive semi-definite.

We can re-write f(−→x ) as,

f(−→x ) = −→x TM−→x +−→x T−→b + c (11)

Then we have,

∇f(−→x ) = ∇(−→x TM−→x +−→x T−→b + c)

= ∇(−→x TM−→x ) +∇(−→x T−→b )

= 2M−→x +
−→
b

(12)

And furthermore, we can calculate the Hessian by taking the Jabobian of the
gradient,

Hf (−→x ) = J[∇f(−→x )] = 2M (13)

We also have the following proposition,

Let f : IRn → IR be a twice-differentiable function. We denote by Hf the
Hessian matrix of f . Then f is convex if and only if for all x ∈ IRn, Hf (x)
is positive semi-definite. [Prop. 1]

Therefore, if we show that when M is positive semi-definite, it is equivalent to
Hf being positive semi-definite, we will have proved the original statement. If M
is positive semi-definite, we have,

−→x TM−→x ≥ 0 (14)
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−→x T (2M)−→x ≥ 2(0) = 0 (15)

−→x THf (−→x )−→x ≥ 0 (16)

Therefore, when M is positive semi-definite, this is equivalent to Hf (−→x ) being
positive semi-definite, and we achieve the desired result: f is convex if and only
if M is positive semi-definite.

(b) In this question, we assume M to be positive semi-definite. Show that

f admits a minimizer if and only if
−→
b ∈ Im(M).

The fact that f admits a minimizer is equivalent to saying that ∇f(−→x ) = 0 for
some −→x . Equivalently, it must be the case that for some −→x

∇f(−→x ) = 0 (17)

2M−→x +
−→
b = 0 (18)

2M−→x = −
−→
b (19)

M−→x = −
−→
b

2
(20)

This equation is equivalent to the notion that
−→
b is in the image of M , since if

it were not, there would be no −→x that satisfies this equation. Since all of the
statements used are equivalencies, we have that f admits a minimizer if and only

if
−→
b ∈ Im(M).
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3. (3 points). We say that a function f : IRn → IR is strongly convex if there
exists α > 0 such that the function −→x → f(x) − α

2 ||
−→x ||2 is convex. In other

words, f is strongly convex if there exists α > 0 and a convex function
g : IRn → IR such that

f(x) = g(x) + α
2 ||
−→x ||2

(a) Show that a strongly convex function is strictly convex. (Hint: start
by showing that −→x → ||−→x ||2 is strictly convex).

First, we define a function,

h(−→x ) =
α

2
||−→x ||2 =

α

2
〈−→x ,−→x 〉 =

α

2
−→x T−→x (21)

Where it is evident that we have,

∇h(x) = α−→x T (22)

Hh(x) = α Idn (23)

And furthermore, we have the following proposition,

If for all x ∈ IRn, the Hessian Hf (x) is positive definite, then f is strictly
convex. [Prop. 2]

Additionally, if we are to show that Hh(x) is positive definite, then it must be
the case that,

−→x THf (x)−→x > 0 (24)

For all −→x ∈ IRn (with the exception of −→x =
−→
0 ). So then we have,

−→x T (α Idn)−→x > 0 (25)

α−→x T (Idn Idn)−→x > 0 (26)

α−→x T (IdTn Idn)−→x > 0 (27)
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α(−→x T IdTn )(Idn
−→x ) > 0 (28)

α(Idn
−→x )T (Idn

−→x ) > 0 (29)

α||Idn−→x ||2 > 0 (30)

α||−→x ||2 > 0 (31)

Which is obviously true for all−→x ∈ IRn and α > 0 (with the exception of−→x =
−→
0 ).

This shows that h(x) is strictly convex.

We now have the following problem to solve. Given that g(x) is a convex function
and h(x) is a strictly convex function, show that f(x) = g(x) + h(x) is a strictly
convex function. We can write the following for all −→x ,−→y ∈ IRn, and t ∈ (0, 1),

f(t−→x + (1− t)−→y ) = g(t−→x + (1− t)−→y ) + h(t−→x + (1− t)−→y )

≤ tg(−→x ) + (1− t)g(−→y ) + h(t−→x + (1− t)−→y )

< tg(−→x ) + (1− t)g(−→y ) + th(−→x ) + (1− t)h(−→y )

= tf(−→x ) + (1− t)f(−→y )

(32)

Where the first and last lines follow directly from the definition of f , the second
line follows from g being convex, and the third line follows from h being strictly
convex. The inequality then forces,

f(t−→x + (1− t)−→y ) < tf(−→x ) + (1− t)f(−→y ) (33)

Which proves that f , a strongly convex function, is strictly convex.

(b) Let φ : IRn → IR be a twice differentiable function. Show that φ is
strongly convex if and only if there exists α > 0 such that for all
−→x ∈ IRn the eigenvalues of Hφ(x) are greater or equal than α.

First we note that strong convexity on φ implies that,

φ(−→x ) = g(−→x ) +
α

2
||−→x ||2 (34)

Hφ(−→x ) = Hg(
−→x ) + αIdn (35)
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Now, φ(−→x ) being strongly convex is equivalent to

φ(−→x )− α

2
||−→x ||2 (36)

Being convex, which furthermore, is equivalent to,

Hφ(−→x )− αIdn (37)

Being positive semi-definite for some choice of α (by [Proposition 1 ]). Then, tak-
ing the smallest eigenvalue of Hφ(−→x ), λmin and its corresponding eigenvector,
−→v , we can write the following expressions,

Hφ(x)−→v = λmin
−→v (38)

Hφ(x)−→v − αIdn−→v = λmin
−→v − αIdn−→v (39)

(Hφ(x)− αIdn)−→v = (λmin − α)−→v (40)

But since we know that when Hφ(−→x ) − αIdn is convex, and therefore positive
semi-definite, all of the eigenvalues associated with it are non-negative. Therefore,
φ(−→x ) is strongly convex, if and only if all of the eigenvalues associated with
Hφ(−→x ) are greater than or equal to α.
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4. (3 points). Let A ∈ IRn×m and −→y ∈ IRn. For −→x ∈ IRm we define

f(x) = ||A−→x −−→y ||2

(a) Compute the gradient ∇f(x) and the Hessian Hf (x) at all −→x ∈ IRm.
Show that f is convex.

First, we have that,

∇f(x) = ∇
(
||A−→x −−→y ||2

)
= ∇

(
(A−→x −−→y )T (A−→x −−→y )

)
= ∇

(
(−→x TAT −−→y T )(A−→x −−→y )

)
= ∇

(−→x TATA−→x −−→x TAT−→y −−→y TA−→x +−→y T−→y
)

= ∇
(−→x TATA−→x

)
−∇

(−→x TAT−→y −−→y TA−→x
)

= ∇
(−→x TATA−→x

)
−AT−→y − (−→y TA)T

= ∇
(
(A−→x )TA−→x

)
− 2AT−→y

= 2ATA−→x − 2AT−→y
= 2AT (A−→x −−→y )

(41)

Which would mean that the Hessian, Hf (x), is simply,

Hf (x) = J[∇f(−→x )] = 2ATA (42)

Now, from Proposition 1, we know that f is convex if Hf (x) is positive semi-
definite. For all −→x ∈ IRn we must show that,

−→x THf (x)−→x ≥ 0 (43)

However, this is clearly true, since,

−→x THf (x)−→x ≥ 0 (44)

2−→x T (ATA)−→x ≥ 0 (45)

2−→x T (ATA)−→x ≥ 0 (46)
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2(−→x TAT )(A−→x ) ≥ 0 (47)

2(A−→x )T (A−→x ) ≥ 0 (48)

2||A−→x ||2 ≥ 0 (49)

Which is obviously true, since the norm of A−→x will be non-negative for all values
of −→x . Therefore, Hf (x) is positive semi-definite and f is convex.

(b) Show that if rank(A) < m, then f is not strictly convex.

If rank(A) < m, then A is not full-rank, and N (A) is populated with at least
one non-trivial −→x . In other words, there exists some −→x 6= 0 such that,

A−→v =
−→
0 (50)

Then we have that,

f(−→u +−→v ) = ||A(−→u +−→v )−−→y ||2

= ||A−→u +A−→v −−→y ||2

= ||A−→u −−→y ||2 = f(−→u )

(51)

Now, in order to show that f is strictly convex, it must be the case that for all
−→v ,−→u ∈ IRn and t ∈ (0, 1).

f(t−→v + (1− t)−→u ) < tf(−→v ) + (1− t)f(−→u ) (52)

If we use −→u =
−→
0 and −→v ∈ N (A), we get,

||A(t−→v + (1− t)−→u )−−→y ||2 < t||A−→v −−→y ||2 + (1− t)||A−→u −−→y ||2 (53)

||tA−→v + (1− t)A−→u −−→y ||2 < t||A−→v −−→y ||2 + (1− t)||A−→u −−→y ||2 (54)

|| − −→y ||2 < t|| − −→y ||2 + (1− t)|| − −→y ||2 (55)

|| − −→y ||2 < || − −→y ||2 (56)

This is clearly not true. So, if rank(A) < m, f is not strictly convex.
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(c) Show that is rank(A) = m, then f is strongly convex (use the definition
and results of Problem 9.3).

If we can show that,

Hf (−→x )− αIdn (57)

2ATA− αIdn (58)

Is positive semi-definite, then we will have shown that f is strongly convex (Prob-
lem 3b). Since rank(A) = m, we know that ATA is positive-definite, since,

−→x TATA−→x > 0 (59)

(A−→x )TA−→x > 0 (60)

||A−→x ||2 > 0 (61)

Because A−→x 6= 0 for all −→x 6= −→0 . Therefore, 2ATA has all positive eigenval-
ues. Taking from Problem 3b, we observe the eigenvalue equation relating to the
smallest eigenvalue of 2ATA to be

(2ATA− αIdn)−→v = (λmin − α)−→v (62)

And if we choose α to be λmin, then the smallest eigenvalue of 2ATA − αIdn
becomes zero. Hence, 2ATA − αIdn, is positive semi-definite, and f is strongly
convex, given that rank(A) = m.
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